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Bayesian meta-analysis of diagnostic
tests allowing for imperfect
reference standards
J. Menten,a,b*† M. Boelaertc and E. Lesaffreb,d

There is an increasing interest in meta-analyses of rapid diagnostic tests (RDTs) for infectious diseases. To avoid
spectrum bias, these meta-analyses should focus on phase IV studies performed in the target population. For
many infectious diseases, these target populations attend primary health care centers in resource-constrained
settings where it is difficult to perform gold standard diagnostic tests. As a consequence, phase IV diagnostic
studies often use imperfect reference standards, which may result in biased meta-analyses of the diagnostic
accuracy of novel RDTs. We extend the standard bivariate model for the meta-analysis of diagnostic studies to
correct for differing and imperfect reference standards in the primary studies and to accommodate data from
studies that try to overcome the absence of a true gold standard through the use of latent class analysis. Using
Bayesian methods, improved estimates of sensitivity and specificity are possible, especially when prior infor-
mation is available on the diagnostic accuracy of the reference test. In this analysis, the deviance information
criterion can be used to detect conflicts between the prior information and observed data. When applying the
model to a dataset of the diagnostic accuracy of an RDT for visceral leishmaniasis, the standard meta-analytic
methods appeared to underestimate the specificity of the RDT. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

Accurate diagnosis of infectious diseases is essential in primary health care in developing countries
where infections are the most common causes of death and ill health [1]. Rapid and easy-to-use
diagnostic tests, which are fit for purpose, have a key role in accurate diagnosis and correct patient
management. Management of infectious diseases on the basis of clinical signs and symptoms is often
not sufficiently accurate and may lead to giving inappropriate treatment and inducing antibiotic resis-
tance [1]. Detection of infectious organisms in samples through microscopical examination or cultures
may be costly, insufficiently sensitive, and difficult or dangerous to perform under field conditions, as
for example in the case of the parasitic disease visceral leishmaniasis (VL) [2]. Consequently, there is a
need for the development of rapid diagnostic tests (RDTs) for many infectious diseases, which should
be evaluated for diagnostic accuracy in field conditions.

In diagnostic accuracy studies, the performance of a diagnostic test or algorithm in correctly
identifying diseased and non-diseased subjects is assessed. Most diagnostic accuracy studies report
estimates of sensitivity (S D P.T CjDC/, where TC is a positive test result andDC indicates subjects
with the disease of interest) and specificity (C D P.T � jD�/, where T� is a negative test result and
D� indicates subjects free of the disease of interest), possibly in combination with other measures of
diagnostic accuracy such as the positive and negative predictive values or diagnostic odds ratio [3, 4].
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These measures are usually estimated by comparing the results of the test under evaluation (index test)
with that of a reference standard [5], which is the best available approximation of the true disease status
[6]. An alternative approach is the use of latent class analysis (LCA), which models the dependence
between several diagnostic tests to estimate the diagnostic accuracy of all tests under consideration
without explicitly using any of the tests as reference standard [3, 4].

Diagnostic accuracy studies tend to be small and give imprecise estimates of S and C [7]. Con-
sequently, there is a need for statistical methods to summarize these studies through meta-analytic
techniques. Meta-analyses of diagnostic studies focus mainly on pooling the S and C pairs from each
study as these are the most commonly reported accuracy measures. Generally, only methods are advised,
which combine studies allowing for correlations among S and C , as on theoretical grounds; these mea-
sures should be negatively correlated because of the presence of threshold effects [5], even though
empirical studies suggest that methods ignoring possible correlations may perform equally well [8].

Two approaches are described in the literature for the combination S -C pairs. The summary ROC
approach models the diagnostic odds-ratio (DOR D ŒS � C �=Œ.1 � S/ � .1 � C/�) [9]. This method
has the disadvantage that it limits the analysis to a single measure and does not allow to discriminate
between the ability to detect diseased subjects (as described by S ) and identify those who do not have the
disease in question (as described by C ). Consequently, ROC-based approaches may not be appropriate
for clinical studies, which assess the use of a diagnostic test in practice [3]. In addition, this approach
assumes that the correlation between S and C is negative, which may not always be the case. In con-
trast to the summary ROC analysis, the bivariate model [5, 10] models the study-specific sensitivity and
specificity pairs fSi ; Cig for each study i jointly to produce estimates of S and C while allowing for
possible correlation between these two measures.

Both approaches have in common that they are applicable only to studies, which use a reference
standard and that they produce only valid results if this reference standard can classify all individuals
correctly as diseased or non-diseased, that is, a true gold standard. It is well known that if an imperfect
reference standard is used as a gold standard, the estimates of the S and C of the index test will be
biased. Generally, this imperfect gold standard bias will result in an underestimation of the accuracy of
the index test. Only if the errors of the index and reference standard are highly correlated, the opposite
will occur, and the S and/or C of the index test will be overestimated [3].

For a correct estimation of S and C , the index and reference tests should be applied to all subjects,
and all subjects should be taken into account in the calculation of the diagnostic accuracy of the index
test. Investigators tend to believe that only rigorous verification of diseased cases and non-diseased con-
trols, and discarding the data from those subjects for which no definite diagnosis can be made, results
in unbiased estimates. However, the opposite is true, and studies requiring the most strict verification of
disease status may report the most biased estimates of accuracy [11]. Bias may also be induced when it is
impossible to perform the reference standard in the primary health care centers for which the diagnostic
test under evaluation is intended. When the diagnostic test is evaluated in a referral center, the diag-
nostic accuracy of the test may be different because of a different spectrum of subjects being evaluated
(spectrum bias) or because of difference in training of staff or test equipment.

Latent class analysis is an alternative approach to estimating S and C. In LCA, the disease status D
is an unobserved, or latent, variable, and a probabilistic model is assumed for the relationship between
results of several imperfect diagnostic tests results and the latent disease status [12]. Estimation of the
model, either through maximum likelihood [13,14] or Bayesian methods [15–17], results in estimates of
S and C of each of the diagnostic tests. Even though this approach is not necessarily without bias [18] or
problems with respect to interpretation [19–21], it can be a valid approach for diagnostic studies where
no gold standard exist or is impossible to perform in field conditions and is increasingly used in the
analysis of diagnostic accuracy studies. As a consequence, meta-analysis methods should allow for the
combination S and C estimates from studies using reference standard and studies using LCA. In addi-
tion, for studies that use reference standards, allowance should be made for the fact that this reference
standard may not be perfect.

In this paper, we extend the bivariate model for the meta-analysis of diagnostic studies to accommo-
date data from both studies using reference standards and studies using LCA and to correct for differing
and imperfect reference standards in the primary studies. We do this using a Bayesian analysis with
informative priors based on expert opinion. We argue that this allows for a more correct meta-analysis
of diagnostic studies when a true gold standard is lacking or difficult to apply in field conditions.

In recent years, a number of papers have addressed the same problem of diagnostic meta-analysis in
the absence of a perfect reference standard [22–26]. Our approach differs: (i) by the use of prior infor-

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 5398–5413

5399



J. MENTEN, M. BOELAERT AND E. LESAFFRE

mation and expert opinion on the diagnostic performance of the reference test; and (ii) by allowing for
different methods to estimate the index test diagnostic accuracy across studies. Some primary studies
may use LCA, in which case we use the resulting estimates of S and C and their confidence intervals.
Other primary studies may use a reference test, in which case we use the 2�2 contingency table of index
versus reference test results in our meta-analysis.

In Section 2, we describe the dataset that motivated us to extend existing meta-analyses methods for
diagnostic studies. We describe the standard bivariate model in Section 3.1 and extend this model to
correct for bias due to imperfect reference standards in Section 3.2 and incorporate studies that use LCA
in Section 3.3. We describe three variations of the model and study the performance of these model
formulations in a simulation study, described in Section 4. We apply the model to motivating example in
Section 5 and discuss the use of the extended bivariate model in Section 6.

2. Motivating example

2.1. Introduction

Visceral leishmaniasis, also known as kala-azar, is a deadly protozoal disease transmitted by sandflies.
The disease occurs mainly in Eastern Africa, the Indian subcontinent, and Latin America and causes an
estimated 200,000 to 400,000 new cases and 20,000 to 40,000 deaths each year [27]. It occurs mainly
in rural communities where it affects the poorest of the poor who have access only to the most basic
primary health care [28, 29]. Early and accurate diagnosis and treatment are key components of VL
control. Diagnostic tests for VL should be highly sensitive, as it is a fatal disease but should also be
highly specific as available drugs tend to be toxic. Moreover, these tests should be fit for use in primary
health centers in poor and remote rural areas.

Detection of parasites by microscopic examination of aspirates from lymph nodes, bone marrow, or
spleen is the classical confirmatory test for VL. The specificity of this procedure is high, but the sensi-
tivity of microscopy varies depending on the type of tissue aspirate. The sensitivity is higher for spleen
(93–99%) than for bone marrow (53–86%) or lymph node (53–65%) aspirates [28, 30]. In addition,
these techniques are costly and may be difficult or dangerous to perform under field conditions [2].
Bone marrow aspiration is painful and requires sterilization of materials, whereas spleen aspiration
can be complicated by life-threatening hemorrhages in �0.1% of individuals and requires considerable
technical expertise and health care facilities [28].

Antibody-based tests in combination with a standardized clinical case definition for VL diagnosis have
been shown to be a viable alternative to classical microscopical diagnosis of VL. rK39-based RDTs are
considered to be currently the best available diagnostic tool for VL for use in remote areas [28]. The
performance of this test was studied in a previous meta-analysis [31] of 13 validation studies in which
the rK39-based RDTs showed a sensitivity and specificity of 93.9% (95% CI, 87.7–97.1) and 95.3%
(95% CI, 88.8–98.1), respectively [31]. This meta-analysis however combined studies from different
clinical stages of the development of the diagnostic test of which only four phase IV studies, that is,
studies recruiting clinically suspect patients consecutively in a representative clinical setting. The phase
IV design ensures the most realistic assessment of the performance of a test when used as a diagnostic
tool in the target population as it avoids spectrum bias of the patient population and is performed by the
health care workers that ultimately will use the test in clinical practice [4]. There was consequently a
need to update this meta-analysis focussing only on phase IV studies.

2.2. Study data

On the basis of predefined selection rules [32], we included 16 studies in the meta-analysis: six from the
Indian subcontinent, eight from Eastern Africa, and one each from Latin America and the Mediterranean.
As geographic region has been shown to be an important determinant, we incorporate the effects of
geographic region in the analysis using meta-regression techniques [33] and limit the current analysis
to the regions from where more than a single study was available, that is, the Indian subcontinent and
Eastern Africa.

A forest plot of all S and C estimates of the 14 included studies is shown in Figure 1, and the data
are summarized in Supplementary Material 3‡. There was wide variation in the reference standards used

‡Supporting information may be found in the online version of this article.
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Figure 1. Forest plot of visceral leishmaniasis data: sensitivity and specificity estimates of the rK39 test for
visceral leishmaniasis of 16 individual studies, classified by reference standard used.

in the calculation of the diagnostic accuracy of the rK39-based RDTs, even though three studies with
insufficiently accurate reference test were a priori excluded. Six studies used LCA: five performed LCA
using four diagnostic tests [20, 34]and one study used six diagnostic tests [35].

Two studies used microscopical examination of spleen aspirates as basis for the reference standard
[36]. However, spleen aspirates were not performed for all subjects in these two studies. In one study
[36], spleen aspiration was preceded by a bone marrow aspirate. If this test was negative, spleen aspi-
ration was performed unless there was clear initial response to treatment of an alternative diagnosis, a
refusal of the patient, or his physician; the patients spleen was too small to be punctured; or the patient
had a coagulation disorder. In fact, spleen aspiration was only performed in six out of the 45 non-VL
controls included in the study. In the second study, out of the 192 non-VL controls, 73 did not have a
spleen aspirate performed for patients whose initial blood or sputum smears or chest radiographs indi-
cated a diagnosis of malaria (nD 52) or active tuberculosis (nD 21) [37]. Consequently, the actual S of
the reference test may be less in clinical practice than the 93–99% reported in the literature [28].

The remaining six studies used a combined reference standard of microscopical examination of tissue
samples with another serological, diagnostic tests. In the studies included in the meta-analysis, all VL
cases were either parasitologically positive or showed high titers to the direct agglutination test (DAT).
Controls either had a low DAT titer when spleen or bone marrow aspiration was not required or a border-
line DAT titer and a negative spleen or bone marrow aspiration. The studies [38–41] varied with respect
to the cutoffs used. Chappuis et al. [42] combined information from bone marrow aspirates, DAT results,
and response to treatment into a more elaborate reference test.

This example shows how individual studies may vary strongly with respect to the reference test used.
Indeed, each investigator attempts to use the best available reference test within the constraints of the
study setting or avoids the choice of a single reference test through LCA.

3. The bivariate model

The bivariate model for the meta-analysis of diagnostic studies is a hierarchical model where for each
study i , there is a true underlying but unobserved sensitivity Si and specificity Ci of the index test, that
is, the diagnostic test of interest [10]. It allows modeling of the variation of the underlying Si and Ci
among studies through meta-regression [33] and uses a random effects approach to account for additional
unexplained variation between studies. This variation may be due to differences in study population,
implicit thresholds to qualify subjects as test positive or test negative or variations in test protocol [5].

More specifically, it is assumed that g.Si / = �Si and g.Ci / = �Ci follow a bivariate normal
distribution: �

�Si
�Ci

�
�N

��
�S C �SZi
�C C �CZi

�
; †

�
with †D

 
�2S �SC

�SC �2C

!
(3.1)
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with g.:/ a link function and �S and �C coefficient vectors describing the influence of covariates Zi on
the mean structure of S and C , respectively [10]. The model allows the study-specific Si and Ci to be
correlated with �SC D �SC =.�S � �C / the correlation between �Si and �Ci . It is often assumed that
this correlation is negative through a test positivity threshold, but the model allows also for a positive
correlation. For the link function g.:/, usually the logit link function (g.x/D logŒx=.1�x/�) is proposed
[5, 10], but alternative links, such as the complementary loglog link function g.x/D logŒ�log.1� x/�,
are possible [24].

The sources of the individual level data can come from studies using a perfect standard, from stud-
ies using an imperfect reference standard, and from studies using LCA to estimate the study specific
Si and Ci .

3.1. Using data from studies using a perfect reference standard

Results from each study i that estimates the diagnostic accuracy of an index test based on a reference
test can be summarized by a contingency table of the cross-classification of the ni subjects according to
index and reference test results (Table I). If the reference test is perfect, the number of diseased and non-
diseased subjects is known and is equal to yi:1 and yi:0, respectively. The numbers of true positives and
true negatives are then yi11 and yi00. In the standard bivariate model [10], the observed numbers of true
positives and true negatives are then assumed to be drawn from two independent binomial distributions
yi11 � Bin.yi:1; Si / and yi00 � Bin.yi:0; Ci /.

3.2. Latent class analysis with informative prior distributions for reference test accuracy

The model in Section 3.1 assumes that the reference standard can perfectly classify patients as diseased
or not, that is, that the S and C of the reference tests are both 100%. For many diseases and studies, this
perfect reference standard is however unavailable. In many cases, the analysis is then performed using
an imperfect reference standard, but presuming it is perfect. This can lead to strongly biased estimates of
S and C resulting in a meta-analysis with a highly precise but biased estimate of the diagnostic accuracy
of the index test. Instead of assuming all yi11 to be true positives and all yi00 to be true negatives, we
can model directly the counts in contingency Table I using a multinomial distribution.

If yijl equals the number of subjects in study i with result j (0=negative, 1=positive) to the index test
and result l to the reference test, then

yijl �Mult.ni ; pijl/;

with

pijl D �i

h
S
j
i .1� Si /

1�j S lRi .1� SRi /
1�l C .�1/j�l covi jDD1

i
C .1� �i /

h
C
1�j
i .1�Ci /

j C 1�lRi .1�CRi /
l C .�1/j�l covi jDD0

i
;

and

covi jDD1 D �i jDD1
p
Si .1� Si / SRi .1� SRi /

covi jDD0 D �i jDD0
p
Ci .1�Ci / CRi .1�CRi /

(3.2)

where �i is the prevalence in study i , SRi and CRi the S and C of the reference test, and covi jDD1
(�i jDD1) and covi jDD0 (�i jDD0) the covariances (correlations) between index and reference test results
in diseased and non-diseased subjects, respectively.

Table I. Typical data display for a diagnostic accuracy
study i , presenting a contingency table of index test and
reference test results.

Reference test result
Negative Positive

Index test Negative yi00 yi01
result Positive yi10 yi11

Total yi:0 yi:1
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For model identifiability, we need deterministic or probabilistic constraints on this model. One
possible simplifying deterministic constraint is to assume that index and reference test results are inde-
pendent conditionally on the disease status, that is, covi jDD1 � covi jDD0 � 0. In addition, in most cases,
some information is available on the diagnostic performance of the reference test, which can be used
as probabilistic constraints [15] in a Bayesian setting. As the different studies in a meta-analysis may
employ different reference tests with each of their own S and C , we can categorize studies according
to the reference standard Ri in K classes. For example, in our application, we identified two refer-
ence standards: ‘spleen parasitology’ and ‘combined reference standard’. For each of these K different
reference tests, we can subsequently obtain prior information on the diagnostic accuracy SRk and CRk ,
with k D 1; 2; : : : ; K. This information can be obtained from the literature or through elicitation of the
opinion of experts in the field. To incorporate this information in the meta-analysis, we can then use one
of the following models for each of the K imperfect reference standards identified.

(1) We can model the g.SRi / D �SRi and g.CRi / D �CRi using a bivariate normal, similar to the
model used for the index test:�

�SRi
�CRi

�
�N

��
�SRk.i/
�CRk.i/

�
; †k.i/

�
with †k.i/ D

 
�2SRk.i/

�SRk.i/CRk.i/
�SRk.i/CRk.i/ �2CRk.i/

!
(3.3)

where k.i/ indicates the type of reference test used in study i . We will use informative priors for the
hyperparameters �Sl.i/ , �Cl.i/ and †l.i/ to ensure identifiability of the model and to incorporate
knowledge about the performance of the reference test in our analysis. We will label this model
in the remainder of the manuscript as the ‘partial pooling’ model following the terminology of
Gelman and Hill [43].

(2) Alternatively, we can assume that the S and C of the reference tests are constant across studies
using the same reference standard, that is, �SRi � �Sk.i/ and �CRi � �Ck.i/ , and performing
‘complete pooling’ of the study specific SRk.i/ and CRk.i/ estimates. This can be seen as a spe-
cial case of model 3.3, where �SRk.i/ ! 0 and �CRk.i/ ! 0 results in the ‘complete-pooling’
model [43].

(3) In contrast, a ‘no-pooling’ approach is equally possible by leaving �SRi and �CRi unmodeled. This
corresponds to �SRk.i/ !1 and �CRk.i/ !1 in model 3.3 [43].

The prevalences �i at the study level are left unmodeled by providing a Beta(1,1) distribution,
equivalent to uniform distributions over the interval [0,1], as prior for �i .

3.3. Using plug-in estimates from primary studies that are based on latent class analysis

The aforementioned approaches assume at the individual study level that each study uses a single
reference standard to classify patients as diseased or not. However, in the last decennia, studies using
LCA to calculate the accuracy of novel diagnostic tests are increasingly common. In these studies, several
imperfect tests are performed on each subject, and a model-based analysis is performed that allows the
joint estimation of the disease prevalence � and the S and C of each test. A wide variety of approaches
have been proposed, using maximum likelihood [44] or Bayesian methods [45], allowing for conditional
dependence through random or direct effects [16, 20, 46], and correcting for other biases as differential
verification bias [47]. The likelihood of the observed data will depend on the number of tests and the
presumed dependence structure of the data and may differ between the different studies included in a
meta-analysis. These studies will typically report OSi and OCi together with 95% confidence or credible
intervals. From these, we can obtain g. OSi /D O�Si , g. OCi /D O�Ci , O� O�Si , and O� O�Ci . Rather than re-analyzing
the observed data from these studies, we use these estimates as plug-in estimators, and we assume that
the reported O�Si and O�Ci are drawn from two independent normal distributions:

O�Si �N
�
�Si ; �

2
OSi

�
;

O�Ci �N
�
�Ci ; �

2
OCi

�
;

(3.4)

with �Si and �Ci defined as before and using O�2
OSi

and O�2
OCi

as plug-in estimators of �2Si and �2Ci .
Subsequently, the f�Si ; �Cig pairs are assumed to be drawn from the bivariate normal defined in
equation (3.1).
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Figure 2. Directed acyclic graph of the extended bivariate model.

3.4. Combining data from different sources in the bivariate model

The data from studies using true perfect reference standards, imperfect reference standards, and studies
that use LCA can be combined in the basic bivariate model using the methods described in Sections 3.1,
3.2, and 3.3, respectively. A directed acyclic graph of the full model is in Figure 2. In general, it may
not be appropriate to assume that any reference standard is perfect and use the standard model described
in Section 3.1, as the accuracy of any diagnostic test depends on the availability of well-trained and
experienced laboratory technologists, and operator errors can always occur. For example, identification
of infectious agents through microscopical examination of tissue samples are known to have a limited
sensitivity but are routinely assumed to be 100% specific. However, microscopical misidentification
of infectious organisms can occur because of the subjective nature of differentiating similar-appearing
organisms on a microscopical slide [48]. In addition, if a test is known to have perfect S or, more
commonly, C , this information can be used as deterministic or probabilistic priors for model 3.2 [15].

The hierarchical model will weigh studies according to the precision of the estimation of S and C
[49]. Informative priors for the reference test, if they are not in conflict with the data, will—all else
being equal—result in a higher precision in estimating the index test S and C and consequently impart
a higher weight of the studies in the meta-analysis. Assuming the reference test is perfect, it can be seen
as a highly informative prior and will consequently result in higher weights to the studies that use the
assumption of perfect reference tests. The precision of the plug-in estimates from primary studies that
use latent class models, as described in Section 3.3, will depend on a variety of factors: the sample size
and prevalence of the disease, the number of reference tests used, the presumed dependence structure of
the data, and the use of informative priors in a Bayesian setting.

4. Simulation study

4.1. Setup

To assess the performance of our approach, we performed a limited simulation study. We simulated a
meta-analysis of diagnostic studies of an index test under evaluation with S = 90% and C = 90%. The
simulated meta-analysis combines data from 20 studies. Of these, five studies use LCA to estimate S
and C of the index test, and 15 studies use one of three imperfect reference standards: (i) five studies
use a reference standard with low S (SR1 D 85%) and perfect C (CR1 D 100%); (ii) five studies use

5404
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a reference standard with perfect S (SR2 D 100%) and low C (CR2 D 85%); and (iii) five studies use
a reference standard with moderate S and C (SR3 D CR3 D 93%, as the nearest integer value to the
average of 85% and 100%). The results of the index and reference test were simulated from independent
distributions, conditional on the disease status of each study subject. The simulated studies had moderate
sample sizes (100–300 subjects) and a disease prevalence of 50%. The Si and Ci of the 20 studies for
one of the 500 simulated data sets are shown in Supplementary Material 2. As can be expected, studies
with a reference test with a low S tend to underestimate the C of the index test, whereas studies with a
reference test with a low C tend to underestimate the S of the index test.

We analyzed each simulated data set using the extended bivariate model described previously using
the logit for the link function g.:/. Uninformative priors were used for hyperparameters related to the
index test (�S , �C ,†). Specifically, we used normal priors with mean � equal to zero and standard devi-
ation � equal to 1.69 for the logits of index test S and C (�S and �C ). This prior matches a uniform prior
over the interval [0,1] in the first two moments on the probability scale [50]. For the variance–covariance

matrix †, we can use a Wishart prior with 2 degrees of freedom: Wishart

��
0:001 0

0 0:001

�
; 2

�
[51] or

alternatively uniform priors for �S , �S , and �SC . Prevalences �i at the study level were left unmodeled
by providing a Beta(1,1) distribution. For the reference test, we fitted ‘no-pooling’, ‘complete-pooling’,
and ‘partial-pooling’ models as defined in Section 3.2. To assess the influence of prior information, we
used four different priors for the accuracy of the reference tests in the analysis (Supplementary Material
4). ‘Correct priors’ provide information consistent with the true S and C of the reference test; ‘vague
priors’ only indicate that the reference tests are informative of the correct diagnosis (S and C between
50 and 100%); ‘incorrect priors’ are inconsistent with the simulated S and C .

Results are provided for 10 analyses: one analysis assuming the reference standards are perfect and
the three different models for reference test accuracy (no/complete/partial-pooling) with each of the
three priors.

4.2. Results

Figures 3 and 4 show the distribution of, respectively, the deviance information criterion (DIC) [52] and
O�S , SE( O�S ), O�S , and O�SC from the 10 models applied to the 500 simulated data sets. Assessing the fit of

Figure 3. Distribution (box plots) of the deviance information criterion: the extended bivariate model applied to
500 simulated datasets.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 5398–5413
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Figure 4. Distribution (box plots) of O�S , SE( O�S ), O�S , and O�SC from the extended bivariate model applied to
500 simulated datasets.

the model to the data, using the DIC, revealed that both the analysis assuming perfect reference tests and
the analysis using incorrect priors showed a worse fit than the analyses using priors consistent with the
data (Figure 3). There was however considerable overlap in the distribution of the DIC of the different
models over the 500 simulated datasets. The analyses assuming perfect reference tests or using incorrect
priors showed also important bias in estimating the index test S (Figure 4a) and C . The analysis assum-
ing perfect reference tests underestimated �S (Figure 4a) and �C and showed a small standard error
for O�S (Figure 4b) and O�C , resulting in a low coverage (Table II). The analysis with incorrect informa-
tive priors resulted in this simulation in an overestimation of �S (Figure 4a) and �C with low precision
(Figure 4b). Both the analyses using correct and vague priors showed acceptable coverages. Vague priors
resulted in a small overestimation of �S (Figure 4a) and �C and reduced precision compared with the
analysis using correct informative priors (Figure 4.b) but provided a noticeable improvement compared
with the standard analysis assuming perfect reference standards.

With respect to the random effects estimates, the analysis using incorrect priors tended to overestimate
the random effects variation (Figure 4c). Both analyses assuming perfect reference tests or using incor-
rect priors, induced a negative correlation between Si (Figure 4d) and Ci , while the data were simulated
assuming independence. This bias in estimation of �SC would be interpreted as evidence of a threshold
effect in a standard analysis. However, further study is needed to determine if this negative correlation is
particular to our simulation or can be generally seen when incorrectly assuming that the reference tests
used were perfect.

Little difference was observed in the results of the three different model formulations for the refer-
ence tests (no/complete/partial-pooling). The partial-pooling approach tended to result in the best fitting
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Table II. Coverages of the 95% credible intervals for the parameter estimates from the
extended bivariate model applied to 500 simulated datasets.

Prior/model for Coverages for parameter estimates of diagnostic
diagnostic accuracy of accuracy of the index test
the reference test �S �C �S �C �SC

Perfect reference test 21.1 23.7 94.7 93.0 90.9
Correct: complete-pooling 94.0 94.7 87.8 87.1 98.1
Correct: no-pooling 92.1 93.0 85.4 84.7 99.0
Correct: partial-pooling 91.1 92.6 81.3 88.0 99.3
Vague: complete-pooling 96.2 95.9 89.2 87.3 99.3
Vague: no-pooling 91.1 87.1 88.5 90.2 99.8
Vague: partial-pooling 92.6 89.4 86.8 87.1 99.8
Incorrect: complete-pooling 98.6 98.3 45.8 35.3 72.9
Incorrect: no-pooling 98.8 93.3 36.5 21.8 50.6
Incorrect: partial-pooling 98.3 96.2 39.6 30.9 65.0

Notes: Each simulation consists of 20 simulated primary study datasets: 15 studies using imperfect
reference standards and five studies using latent class analysis. Simulated values were �S D �C D 2:2,
�S D �C D 0:5, and �SC D 0. Data were analyzed with the extended bivariate model described
in Section 3 for index test diagnostic accuracy. Uninformative priors were used for hyperparame-
ters related to the index test. For the reference test, we fitted a model assuming that the reference
test is perfect as well as ‘no-pooling’, ‘complete-pooling’, and ‘partial-pooling’ models as defined in
Section 3.2 and used three different priors in the analysis. A full description of the simulation study
setup is in Section 4.1.

models as assessed by the DIC. Standard errors for O�S and O�C were largest for the complete-pooling
approach (Figure 4b).

4.3. Conclusions

This simulation study indicates that the proposed methodology is a valid analysis approach to correct for
imperfect reference tests in a meta-analysis. The use of both correct and vague priors for the reference
test S and C resulted in estimates of the index test S and C , which were less biased compared with
those assuming the reference test was perfect. As illustrated, the DIC can be used to identify conflicts
between priors and observed data. However, the overlap in DIC distributions between the different mod-
els indicates that model choice should not be based on DIC alone. The use of incorrect informative priors
resulted in large increases in the standard errors of the parameter estimates O�S and O�C , which may be
preferable to the precise, but biased estimates obtained using incorrectly assuming that the reference test
is perfect.

The three modeling approaches for the reference test S and C (no/complete/partial-pooling models)
resulted in broadly similar results. The partial pooling model may be most appropriate and showed the
best fit to the data but may result in unidentified models in some datasets. In those cases, the complete-
pooling model may provide an alternative analysis approach at the expense of a slight loss in precision
in estimating O�S and O�C .

5. Application

5.1. Study Description

We applied our meta-analysis approach to the data from the motivating example described in Sec-
tion 2 and Supplementary Material 3. We obtained informative priors on the diagnostic accuracy of
the two reference tests from seven international Leishmania experts. The experts were selected among
VL researchers from the different endemic regions of Leishmania. The experts were asked to provide
the most likely value for S and C of each reference test, together with a 95% prediction interval for
the study-specific SRi and CRi (Supplementary Material 5). The estimates and prediction intervals were
transformed using the selected link function g.:/, and a linear pool was constructed by obtaining the
average diagnostic and pooled variance over the experts. These estimates were used to construct nor-
mal informative priors for the hyperparameters �Sl.i/ , �Cl.i/ and †l.i/ in the extended bivariate model

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 5398–5413
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Figure 5. Expert opinion of seven experts (triangles and dotted line) and linear pooled expert opinion
(filled circle and full line) on the diagnostic accuracy of the two reference standards used in the visceral

leishmaniasis study.

(Figure 5). The resulting priors are given in Supplementary Material 4. In addition, we applied a model
using vague priors, assuming with 95% certainty that SR and SC were in the interval 50–100%. Again,
we used no, complete, and full pooling of the reference test diagnostic accuracy across studies using the
same reference test. We used the complementary log-log function as link function, as this provided a
better fit to the data and added an effect for geographic region in the model, as an earlier meta-analysis
indicated this to be an important predictor of S of serological tests for VL.

5.2. Results

We estimated all models using Markov chain Monte-Carlo methods through Gibbs sampling using Open-
BUGS version 3.0.3 called from within R 2.14.1 using the BRugs library. The OpenBUGS code for the
models is in Supplementary Material 1. We checked the convergence using visual inspection of trace
plots of the Markov chains and the Gelman–Rubin diagnostic statistic [53]. Final results were from 3000
samples obtained out of three chains of each 10,000 Markov chain Monte-Carlo iterations, retaining
every 10th draw to reduce autocorrelation, after a burn-in of 40,000 iterations. Gelman–Rubin statistics
are 6 1.01 for all parameters.

Parameter estimates from applying the extended bivariate model to the data are in Table III. The best
fitting model was the partial-pooling model using vague priors, although differences in fit between the
different models were modest. The models using expert opinion showed a higher DIC than the models
using vague priors, indicating some discordance between the expert opinion of the reference test diag-
nostic accuracy and the observed data. There was little indication of lack of diagnostic accuracy of the
reference tests used in the studies selected for the meta-analysis, and estimates of the extended bivariate
model were in line with those from the standard bivariate model assuming perfect reference standards.
There may be some underestimation of the C of the index test in the analysis assuming perfect refer-
ence standards: 90.1% and 91.1% in the Indian subcontinent and Eastern Africa, respectively, compared
with 92.4% and 93.1% in the best fitting model. Credible regions for the means S and C and prediction
regions for study specific Si and Ci are in Figure 6 for the model assuming perfect reference standards
and partial-pooling model using vague priors. Credible and prediction regions were similar apart from
the slightly higher estimates of C allowing for imperfect reference standards.

We performed these analyses assuming conditional independence between index and reference test
results. To assess the robustness of the results to this assumption, we varied the correlation between
index and reference test in model 3.2 from �0:9 to 0:9, in both diseased (�i jDD1) and non-diseased
subjects (�i jDD0). Results were similar for negative correlations and moderate positive correlations
(Supplementary Material 2). With higher positive correlations (0.5 or higher), the estimated S and
C were lower compared with the estimates obtained assuming conditional independence. This can
be expected as the association between index and reference test results, which under the conditional
independence, assumption is explained through the disease status, is then in part explained through the
direct correlation between test results.
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Figure 6. Graphical presentation of the results of the analysis of the visceral leishmaniasis data.

We assessed if results from the studies that used LCA as primary analysis method may have been
biased by including study type (reference test versus LCA-based primary analysis) as a covariate in
model 3.1. There were no significant differences between the two categories of studies. The difference
in O�S between reference test and LCA-based studies was 0.15 (95% credible interval: �0:29; 0:65), and
the difference in O�C was 0:13 (�0:48; 0:79) (data not shown).

6. Discussion

Diagnostic accuracy studies are still often analyzed under the assumption that perfect reference standards
are used. Although meta-analyses of diagnostic studies tend to exclude studies with clearly inadequate
reference standards, there remains some variation in the quality of reference standards used. The use of
an imperfect reference standard may result in biased estimates of the index test S and C and in additional
heterogeneity in S and C estimates across studies.

In this manuscript, we described an extension of the standard bivariate model for the meta-analysis of
sensitivity–specificity pairs, correcting for imperfect reference standards and allowing the incorporation
of results from studies that use LCA. As usually some information is available on the performance of
the reference test, our Bayesian approach allows the use of this information through informative priors.
We can obtain these priors from the literature or, as in our example, from expert opinion.

The simulation study shows that even when relatively little information is available on the diagnostic
accuracy of the reference test, marked improvement of the estimation of the S and R of the index test
is possible compared with the biased estimates obtained when incorrectly assuming that the reference
test is perfect. Informative priors, which are in conflict with the data, can be detected through the use of
model fit diagnostics as the DIC. However, because of the overlap in DIC distributions between different
competing models, model choice should not be based on the DIC alone.

When applied to the motivating example, the best fitting model indicated a somewhat higher C of
the index test compared with the analysis assuming a perfect reference test. Compared with the expert
opinion, the reference tests appeared to perform better than expected, with S and C close to 100%. A
possible explanation is that cases that could not be unequivocally classified with the reference test as dis-
eased or not were removed from the diagnostic studies. Some studies reported the number of excluded
patients explicitly [36, 38, 42], but for other studies, we could not determine if or how many clinical
suspects who could not unequivocally classified as diseased or not were excluded. Another explanation
is the strict criteria for selecting studies in the meta-analysis following the predefined protocol [32].

Limitations of our approach include that currently, we assume conditional independence between
index and reference tests in equation (3.2) to ensure identifiability and that we do not correct for the
exclusion of subjects who could not be unequivocally diagnosed from the analysis in primary studies.
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We assessed the influence of the conditional independence assumption in a sensitivity analysis and con-
cluded that allowing for moderate conditional dependence did not change the study conclusions. Further
exploration of these effects are needed but are hampered by the lack of reliable data on correlations
between index and reference tests and on the number of exclusions in diagnostic study publications [54].
Individual level meta-analysis of diagnostic studies, which fully report results for two or more diagnostic
tests, using network meta-analytic techniques, may help to clarify these issues.

In our modeling, we did not take into account the possibility of differential verification bias where
diagnostic work-up depends on the result from the index test, as these types of studies where specifically
excluded. In some of the studies included in our meta-analysis, there were differences in the extent of
verification of the disease status among subjects, but none depended on information provided by the
index text. For example, no spleen aspirate may have been performed on subjects with a diagnosis of
tuberculosis or malaria or with coagulation disorders. This may lead to a reduced sensitivity of the refer-
ence test, for which we correct in our meta-analysis. However, in none of the included studies, the extent
of verification depended on the index test results. If the extent of verification depends on the index test,
this may result in additional bias of S and C estimates that induced by the use of an imperfect refer-
ence test [55]. In such cases, Bayesian methods, which correct for verification bias [47], can be used to
reanalyze the data. The resulting estimates can then be used as plug-in estimators in equation (3.4) for
the meta-analysis.
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