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Introduction

Leishmaniasis is a group of communicable diseases widespread around the world,
including Southern Europe. The disease is essentially endemic in poverty ridden
settings, and clinical cases are underreported due to the absence of systematic
surveillance systems (Mosleh et al. 2008; Singh et al. 2010). Hence, good
consolidated region-specific epidemiological data are frequently unavailable, and
we currently only have estimations of population at risk (350 million people
worldwide), prevalence (12 million clinical cases worldwide) and incidence
(1.5-2 million new cases occurring annually: 1-1.5 million cases of cutaneous
leishmaniasis and 500,000 cases of visceral leishmaniasis) (World Health Organi-
zation 2010). Infection rates are also underestimated, particularly in species causing
visceral leishmaniasis for which it is guesstimated that 10 (L. donovani) to 100
(L. infantum) asymptomatic infections may occur for 1 clinical case (Ostyn et al.
2011; Pampiglione et al. 1975). However, particular care should be taken to avoid
inflating existing epidemiological data, and this further highlights the need for good
(both at qualitative as quantitative levels) and updated data,

The epidemiology of leishmaniasis is dynamic, and the disease is reported to
(re-)emerge and spread in many regions (Desjeux 2001; Dujardin 2006). Control is
challenged by three major escalating risk factors: human-made and environmental
changes, immune status (essentially because of Leishmania/HIV co-infection), and
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treatment failure (TF) and drug resistance (Desjeux 2001; Dujardin 2006; Schonian
et al. 2008). Drug resistance is the aim of this book, but its epidemiology cannot be
dissociated from other factors that threaten the control of the disease. Indeed, the
different risk factors have a reciprocal influence on each other and can vary from
region to region (Dujardin 2006). This specific synergy between risk factors defines
the character of drug resistance epidemiology and the nature of the challenges they
pose for the local control programs.

In the present chapter, an update of various aspects of leishmaniasis epidemiol-
ogy is presented, with a particular emphasis on their relation with parasite drug
resistance. The focus of this chapter is on antimonials since we have most experi-
ence in the field and in the lab with this drug. Although antimonials are currently
being abandoned as first-line treatment in several countries of the Indian subconti-
nent, we can still draw many lessons from the experience with this drug with respect
to (1) speculation of the future of the few other available drugs and (2) the design
and implementation of adequate surveillance strategies to monitor their efficacy.
Major gaps and confusing issues currently existing in our epidemiological knowl-
edge of drug resistance will be addressed, with a particular attention for the
ambiguous interpretation of the concepts of drug resistance and treatment failure.
Existing and needed tools relevant for epidemiological surveillance (at the levels of
primary health centers, reference hospitals and laboratories) and the potential
impact of this surveillance on local drug policies will be reviewed as a guide to
orient further research activities and inspire funding agencies.

Epidemiology of Drug Resistance and Treatment Qutcome

Treatment outcome is a complex phenomenon with a potentially multifactorial
origin. This clinical phenotype may be determined by (1) host factors, such as
genetics, immunological response (Maurer-Cecchini et al. 2009), characteristics,
and clinical presentation of the patients (Nacher et al. 2001; Palacios et al. 2001);
(2) treatment features, such as drug quality (Franco et al. 1995), duration of therapy,
and compliance; and (3) parasite characteristics, such as variable intrinsic suscepti-
bility (species) (Allen and Neal 1989) and drug resistance (Lira et al. 1999). The
relative importance of parasite drug resistance is still unclear, but in many scientific
communications, the terms “drug resistance” or “resistance” are chronically (ab-)
used for both parasite and clinical phenotypes. In this paper, we will use (1) the term
“drug resistance” to refer to the parasite phenotype characterized by a decreased
susceptibility to a given drug, acquired following successful molecular adaptations
under drug pressure and detected — till now — by an in vitro susceptibility test and
(2) the term “treatment failure” for the clinical phenotype of a patient not
responding to a given treatment or presenting a relapse within a specific time-
window following treatment. We strongly encourage paying a particular attention
to this issue, which is not only of semantic nature.
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Literature survey on drug resistance reveals a severe imbalance between the
number of papers providing information on (1) drug resistance of clinical isolates
and (2) experimental studies, mostly on laboratory strains artificially induced.
Detailed analysis of these reports (Table 1) reveal a lack of standardization in (1)
clinical protocols (e.g., durations of follow-up or definitions of treatment outcome),
(2) sampling procedures (e.g., parasite isolation before the onset of chemotherapy
or at the time of treatment failure), and (3) laboratory procedures for testing in vitro
susceptibility (e.g., the type of macrophages used in the model to test drug suscep-
tibility), which makes it very difficult to compare the findings of the respective
studies. Conditions are thus suboptimal for a correct assessment of the epidemiol-
ogy of antimony (Sb") resistance worldwide.

Anyway, based on the current available data, we can extract the following
information on the status of parasite antimonial resistance in endemic regions.
First of all, isolates defined as SbY-resistant have been encountered so far in India
[Muzzafarpur, Bihar, (Lira et al. 1999; Singh et al. 2006)], Nepal [Eastern Terai,
(Rijal et al. 2007)], Iran (Hadighi et al. 2006), Eastern Sudan [Gedaref, (Abdo et al.
2003)], France (Faraut-Gambarelli et al. 1997), Peru [Amazonian jungle, (Yardley
et al. 2006)], and Colombia (Rojas et al. 2006). The reported frequency of
drug-resistant parasites is biased toward specific regions where treatment failure
was observed; hence, their conclusions should not a priori be generalized to
wider endemic regions or other regions. Secondly, the Sb"-resistant phenotype
was identified in seven different Leishmania species, including a species associated
with zoonotic transmission (see below). Thirdly, we found that the frequency of
Sb"-resistant parasites in a particular region can be strikingly high despite testing a
similar number of isolates from antimonial cured and nonresponding patients.
Fourthly, the relationship between parasite phenotype and clinical phenotype
varies between different regions: some studies report a good correlation between
the two phenotypes (Lira et al. 1999), but others report that the in vitro drug
susceptibility of the parasite has a poor predictive value for clinical treatment
outcome (Rijal et al. 2007; Yardley et al. 20006). Altogether, this shows that our
knowledge on the epidemiology of drug resistance in leishmaniasis is still
very limited, which contrasts with other parasitic diseases, like malaria
(Wongsrichanalai et al. 2002). This is possibly due to the neglected character of
leishmaniasis and the lack of coordination among the few groups involved in the
study of drug resistance in a clinical context but also to the complexity of
Leishmania’s biology which impedes the development of tools to identify and
study drug resistant (DR) parasites.

Literature survey on treatment outcome is more abundant (Amato et al. 2007;
Gonzalez et al. 2008; Gonzalez et al. 2009; Olliaro et al. 2005; Tuon et al. 2008);
but again, evidence base for comparative evaluation of antimonial treatment out-
come and epidemiological mapping has many limitations due to poor design and
reporting of many clinical trials (Romero and Boelaert 2010; Gonzalez et al. 2009).
However, a series of key aspects emerge from the few comparable reports (see
Table 2 for a selection of them). First of all, long-term treatment efficacy data is
only available for antimonials in North Bihar (India) and shows how treatment
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Table 2 Selection of reports on the outcome of antimonial treatment in different clinical forms
and regions (excluding if possible HIV-positive patients)

Report Clinical form No.of Treatment regimen® Period of  Treatment
(species), country patients recruitment  failure rate
Sundar et al, 2000 VL, India, Bihar 209  SSG, 20 mg/kg/day 1994-1997 65%
Sundar et al. 2000 VL, India, Uttar 111 SSG, 20 mg/kg/day for 1994-1997 14%
Pradesh 30 days
Rijal et al. 2010 VL, Nepal, Eastern 169 SSG, 20 mg/kg/day for 2001-2003 9.5%
Terai 30 days
Altaf et al, 2005 VL, Pakistan, 61 MA, dosis not 1999 3.3%
Muzaffarabad specified, 21 days
Verma et al. 2007 VL, India, 9 S5G, 20 mg/kg/day for 20042006 0%
Uttarakhand 4 weeks
Melaku et al. 2007 VL, Southern Sudan 1,178 SSG, 20 mg/kgfday for 2002-2005 7.6%
30 days
Moore et al. 2001 VL, Kenya 51 SSG, 20 mg/kg/day for 1997-1998 17%
30 days
Moore et al, 2001 VL, Kenya 51  MA, 20 mg/kg/day for 1997-1998 4%
30 days
Ritmeijer et al. 2001 VL, Ethiopia 112 S88G, 20 mg/kg/day for  1998-1999 7.9%
30 days
Toumi et al. 2007 VL, Tunisia 16 MA, 20 mg/kg/day for  1983-2002 0%
25 days
Llanos-Cuentas et al, CL (L. braziliensis), 29  SS8G, 20 mg/kg/day for 2001-2004 31%
2008 Peru 20 days
Llanos-Cuentas CL (L. Peruviana), 63 SSG, 20 mg/kg/day for  2001-2004 28.6%
et al. 2008 Peru 20 days
Llanos-Cuentas CL (L. guyanensis), 27 SS8G, 20 mg/kg/day for 2001-2004 7.4%
et al, 2008 Peru 20 days
Romero et al, 2001 CL (L. braziliensis), 52 MA, 20 mg/kg/day for 1996 41.2%
Brazil 10-20 days
Romero et al. 2001 CL, (L. guyanensis), 59  MA, 20 mg/kg/day for 1996 73.7%
Brazil 10-20 days
Firdous et al. 2009 CL (L. major) 207 MA, 20 mg/kg/day for 2005-2007 19%
Pakistan 20 days
Padovese et al. 2009 CL and MCL, 167" MA, 20 mg/kg/day for  2005-2007 28%
Northern 28-30 days
Ethiopia, Tigray
Uzun et al, 2004 CL, Turkey 890  MA, 1020 mg/kg/day 1998-2002 3.9%

for 15-20 days

4$SG Sodium Stibogluconate (Pentostam), MA Meglumine antimoniate (Glucantime)
"Including 5.7% HIV positive patients

efficacy can decline in two decades: from 1.5% to 14% of treatment failure in
1981-1982 (Thakur et al. 1984) to 65% in 2000-2001 as is described in chapter
“Visceral Leishmaniasis™ in the present volume. Secondly, substantial variations in
treatment efficacy can be observed at regional level. This is best illustrated by the
situation in the Indian subcontinent where treatment failure rates for antimonials
range from 65% in Muzzafarpur (North Bihar, India) to 14% in Uttar Pradesh
(India), 9.5% in Nepalese Eastern Terai, and 0% in Uttarakhand (India) (Sundar
et al. 2000; Rijal et al. 2007; Verma et al. 2007). Hence, it is incorrect to perceive
that a high antimonial treatment failure rate is a general feature of the Indian
subcontinent or even India (often mentioned in scientific communications).
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Generalization of region-specific results is done too often and causes misconceptions
about the nature of leishmaniasis treatment failure. Thirdly, high treatment failure
rates are encountered not only in endemic regions with anthroponotic leishmaniasis
but also in areas with zoonotic leishmaniasis (see below). Fourthly, studies evaluating
treatment efficacy should type the species of the infecting parasite as various species
can have an intrinsic difference in tolerance to a particular drug (Allen and Neal
1989). This point is of particular relevance for Latin America where several species
circulate which were shown to have significant differential tolerance to the treatments
used in that region and concomitant variations in treatment outcome were observed.
This feature is described in chapter “American Tegumentary Leishmaniasis” in the
present volume. Interestingly, regional differences also occur as illustrated by the
treatment outcome of infections with L. braziliensis and L. guyanensis: in Peru, it was
the former species which was associated with higher treatment failure (Llanos-
Cuentas et al. 2008), while in Brazil, it was the latter one (Romero et al. 2001).
Fifthly, treatment failure rates are much lower than the frequency of drug resistant
isolates: e.g., 31% TF vs 84.6% DR in Peru (Llanos-Cuentas et al. 2008; Yardley
et al. 2006) or 9.5% TF vs 66.7% DR in Nepal (Rijal et al. 2007; Rijal et al. 2010).
This raises the question on the significance of the current definition of parasite drug
resistance which is based on in vitro susceptibility results (discussed later) and also
indicates that treatment outcome data is currently still more relevant to guide control
strategies. Since resources are limited for clinical research of neglected diseases,
there is a need for giving the priority to properly designed clinical trials. Therefore, it
was suggested to create an international strategy to improve the quality and
standardization of future trials for a better evidence-based strategic approach in the
future (Gonzalez et al. 2009).

Transmission Patterns

Leishmaniasis is characterized by two major transmission patterns, of
anthroponotic and zoonotic natures, respectively. In anthroponotic forms, parasites
are reported essentially to circulate between humans, without any known animal
reservoir. In contrast, in zoonotic leishmaniasis, parasites circulate essentially
among animals (wild or domestic), while humans are considered accidental and
dead-end hosts. The latter is described in detail in chapter “The Role of Reservoirs:
Canine Leishmaniasis” in the present volume. The nature of the reservoir is
theoretically very important for the emergence and spreading of drug resistance.
In anthroponotic leishmaniasis, the parasite is theoretically submitted to a rela-
tively constant drug pressure (present in each host), and drug resistance may
emerge and spread rapidly. In contrast, in case of zoonotic transmission, drug
pressure should be absent in the wild animal reservoir; hence, drug-resistant
parasites could only emerge in treated humans and be transmitted with difficulties
to animals. If drug-resistant parasites do manage to be transmitted to animals,
they should not have a selective advantage in animals (no drug pressure present),
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except if the mechanism leading to drug resistance has a broad impact on the
physiology of the parasites and change their global fitness as is described in
chapter “The concept of fitness and drug resistance in Leishmania” in the present
volume. Thus, theoretically, in zoonotic leishmaniasis, the prevalence of drug-
resistant parasites before the onset of treatment (primary resistance) is expected
to be very low. However, some studies indicate that in Latin America, this is not
necessarily true for antimonial treatment. Some believe this is due to a shift from
zoonotic to anthroponotic transmission (Rojas et al. 2006). We believe that this
primary Sb"-resistance phenotype found in zoonotic context is not the result from
previous contact with the drug but a secondary effect from the adaptation to host
cell stress (Yardley et al. 2006). The demonstration of cross-resistance to antimony
and nitric oxide (Holzmuller et al. 2005) supports this possibility and should be
further explored. In case of zoonotic visceral leishmaniasis, which involves a
domestic animal reservoir (the dog), drug pressure is also present in the reservoir.
Given the intense treatment courses needed to treat dogs, they could rapidly
represent another epicenter for emergence and spreading of drug resistant strains.
This was shown clearly in Italy, where parasites isolated from dogs treated with
meglumine antimoniate were 8- to 41-fold less susceptible to the drug after
treatment compared to before treatment (Gramiccia et al. 1992). Based on these
observations, recommendations have been made to forbid the use of similar
treatments in dogs and humans (Dujardin et al. 2008; Gramiccia et al. 1992).
This important theme is described in chapter “The Role of Reservoirs: Canine
Leishmaniasis” in the present volume.

There are several recent reports highlighting that the true nature of drug pressure
in the different transmission modes is far more complicated than the clear-cut
theory outlined above. For anthroponotic leishmaniasis, the role of asymptomatic
human cases and possibly unknown animal reservoirs in VL epidemiology has been
largely disregarded till now but should be examined carefully as they might have an
impact on the epidemiological dynamics of drug resistance. Asymptomatic human
infections are more frequent than clinical cases [up to 10 times more in a recent
study in Nepal in anthroponotic VL foci (Ostyn et al. 2011)]. These people are not
treated because of the cost and/or toxicity of existing drugs. Animals were recently
recognized as having a possible role in the epidemiology of anthroponotic VL. In a
recent emerging focus of VL in Nepal, asymptomatic Leishmania infections were
found at higher rates among goats (16%) than humans (6.1%) (Bhattarai et al.
2010). The exact role of these infected animals and asymptomatic human carriers as
reservoir is still unknown, but these findings highlight the need for further
explorations. Similarly, in the context of anthroponotic cutaneous leishmaniasis
of the Old World, a recent study in two foci of Northern Israel demonstrated
rock hyraxes (Procavia capensis) to be reservoir hosts of L. tropica (Svobodova
et al. 2006).

In zoonotic leishmaniasis, the nature of the reservoir is also questioned. The
presence of Leishmania (Viannia) sp. parasites in unaffected skin and peripheral-
blood monocytes in a high proportion of patients even after treatment and the
infectivity of these subjects as shown by the acquisition of infection by sand flies
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support the plausibility of anthroponotic transmission of American cutaneous
leishmaniasis (Vergel et al. 2006). It is currently not known if these various reports
concern exceptional situations or if they highlight serious gaps in our knowledge of
the transmission patterns of leishmaniasis. Alternatively, these observations might
be the consequences of changes in the epidemiology of leishmaniasis.

Human-Made and Environmental Changes of the Epidemiology

Human-made and environmental changes have a major impact on (1) the appear-
ance of new foci and (2) transmission pattern changes, and this is confirmed by
several reports.

First of all, as a consequence of global warming, leishmaniases are likely to
spread into currently temperate zones where increased average temperatures may
allow extension of sand fly breeding seasons, or into areas where overwintering in
larval stage was so far prevented by low temperatures (Schonian et al. 2008). This is
well documented in Italy, where comparisons with historical data showed that
P. perniciosus and P. neglectus have increased in density and expanded their
geographic range in northern continental Italy (Maroli et al. 2008). More
recently, the analysis of a randomized sample of 526 healthy adults from north-
western Italy (which is traditionally not considered an area of endemicity)
showed a seropositivity of 7.41% and an asymptomatic infection rate
(as evidenced by PCR) of 53.8% among seropositives (Biglino et al. 2010).

Secondly, increase in the worldwide mobility is also causing changes in the
epidemiological picture. The best example comes from the post-Conquista era
during which L. infuntum from the Mediterranean basin was brought to Latin
America (Mauricio et al. 2000), as is described in chapter “Epidemiology of
leishmaniasis in the time of drug resistance” in the present volume. L. infantum
successfully colonized local sandflies and is now causing a serious public health
problem [> 3,500 cases of VL per year in Brazil (Miles et al. 1999)]. Trans-Atlantic
migration of strains can still occur with potential consequences for spreading of
drug resistance. For instance, miltefosine, one of the few available antileishmanial
drugs, has been recently launched in the market for canine leishmaniasis treatment
in Portugal, Spain, Italy, Greece, and Cyprus. Given the long half-life of the drug
and the fact that dogs are never cured parasitologically, rapid emergence of drugs
resistance is expected in these dogs. If dogs infected with miltefosine-resistant
parasites were to migrate to Latin America, where several countries have registered
the drug for human use [currently Colombia, Guatemala, Argentina, Venezuela,
Paraguay, Ecuador, and Honduras; (World Health Organization 2007)], there might
be epidemiological consequences (Dujardin et al. 2008). Mobility of strains also
carries the additional risk of bringing new parasite phenotypes in a given region.
Even if Leishmania is thought to reproduce essentially clonally, allogamic sexual
recombination may not be excluded (Rougeron et al. 2009), and examples of
successful hybrids were already shown like L. braziliensis/L. peruviana in Peruvian
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inter-Andean valleys (Dujardin et al. 1995; Nolder et al. 2007). This might obviously
contribute to the horizontal transfer of drug resistance genes, but this was not yet
documented.

Thirdly, population movements for economic reasons such as the development
of agroindustrial projects or the seeking of safe haven from civil unrest may
contribute to increased density of susceptible human hosts with epidemiological
consequences. This is illustrated by the last epidemics of VL in Sudan, where an
estimated 100,000 people (out of 300,000) died from VL in Western Upper Nile
State (Zijlstra and El Hassan 2001).

Fourthly, urbanization and domestication of zoonotic transmission cycles is also
increasingly reported. We already reported the case of a suburban emerging focus
of anthroponotic VL around the big city of Dharan in Eastern Terai (Nepal)
(Bhattarai et al. 2010). However, this phenomenon is best illustrated by the situa-
tion in Latin America. In undisturbed Neotropical forests, where (muco) cutaneous
leishmaniasis was for long characterized by a zoonotic profile, Leishmania are
transmitted among sylvatic mammals by the bite of phlebotomine sand flies. The
close association between forest, wild mammal reservoirs, and sand flies has
previously led to predictions that deforestation would lead to local eradication of
some of the most important Leishmania species (Esterre et al. 1986). However, as a
consequence of anthropogenic environmental changes (deforestation and urbaniza-
tion), new vectors and reservoir hosts may adapt and interact at the interface with
humans (Garcia et al. 2007b), resulting in new pathogenic complexes tending to
synanthropic zoonoses, if not anthroponoses (Rotureau 2006).

Epidemiology and Immune Status

Leishmaniasis has been identified as an opportunistic infection in immuno-
suppressed individuals, especially in those with human immunodeficiency virus
(HIV) infection and less frequently in individuals that had organ transplant,
chemotherapy for malignancy, or suffer from immune-mediated disorders (Alvar
et al. 2008). The theme of HIV co-infection is described in chapter “Co-infection
with HIV” in the present volume. Immunosuppression is one of the factors respon-
sible for increased susceptibility to primary Leishmania infection or reactivation of a
silent infection. Among the various sources of immunosuppression, HIV co-
infections and its epidemiology have been best documented. Leishmania/HIV co-
infection has emerged as a result of the increasing overlap between leishmaniasis
(mainly visceral) and AIDS, which is due to the spread of the AIDS pandemic to
rural areas and of visceral leishmaniasis to suburban areas. Historically, this was first
described in the early 1990s in Southern Europe, when the typical clinical pediatric
leishmaniasis profile was shifting due to an increasing number of HIV co-infected
adults. A dedicated surveillance network was established in 1994 and revealed, by
early 2001, a cumulative number of cases peaking at 1,911 (Desjeux and Alvar
2003). A clear decrease of the incidence of co-infection was observed later on in
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Europe, which is likely attributed to the routine use of highly active antiretroviral
therapy (HAART) (Alvar et al. 2008). Currently, HIV co-infection also affects the
three major foci of visceral leishmaniasis, e.g., the Indian sub-continent, East Africa,
and Brazil. In India, HIV infection is concentrated in the south and to a lesser degree
in the northeast (including the district Bihar) where overlap with leishmaniasis
occurs (Alvar et al. 2008). There, the problem of co-infection seems to be
exacerbated by economic migrants who acquire HIV in urban settings and then
return to their rural homes in VL endemic areas, where a new Leishmania infection
can be acquired or an old infection reactivates due to declining immunity (Alvar
etal. 2008). In a clinical setting of Bihar, the VL.-HIV co-infection rate was shown to
increase from 0.88% in 2000 to 2.18% in 2006 (Alvar et al. 2008). In Brazil, where a
surveillance network exists, 2% of VL patients were shown to be co-infected
compared to 0.1% in patients with cutaneous leishmaniasis (Maia-Elkhoury et al.
2007). In East Africa, the worst situation reported so far was in Humera (northwest
Ethiopia), where the proportion of VL patients who were co-infected with HIV
increased from 18.5% in 1998-1999 to 40% in 2006 (Alvar et al. 2008).

There are few clinical trials analyzing the efficacy of the different treatments for
Leishmania/HIV co-infected patients as discussed in chapter “Co-infection with HIV”
of this volume. In general, these patients have lower cure rates, higher drug toxicity
rates, and higher fatality rates for leishmaniasis compared to immunocompetent
patients. Following multiple relapses, the patient often becomes unresponsive to all
the previously used drugs (Alvar et al. 2008). Furthermore, co-infected patients,
which can have high parasite loads in the bloodstream, were confirmed to be a
source of infection for the sand fly or for other humans (through sharing syringes
among intravenous drug users) (Alvar and Jimenez 1994). Co-infected patients
might thus become a true reservoir for zoonotic VL, especially in an urban setting
(Ritmeijer et al. 2001). In this context and considering the very long treatment
schemes in case of co-infection, it is feared that HIV co-infected patients might be a
source for the emergence of drug resistance. This was well documented in a study
of French patients infected with L. infantum. Relapses were observed in all HIV
infected patients, and the susceptibility of isolated parasites was shown to decrease
progressively during successive courses of meglumine antimoniate treatments
(Faraut-Gambarelli et al. 1997). In contrast, in a similar follow-up study of HIV
co-infected patients treated with amphotericin-B, successive isolates from individ-
ual patients did not show decrease in susceptibility, which led to the suggestion that
amphotericin-B will remain a useful drug against VL, even when used as a
prophylactic or in repetitive treatment courses (Lachaud et al. 2009). In the case
of miltefosine, there are no follow-up studies available so far in the context of HIV
co-infection. However, given the short half-life of the drug (about 1 week) and the
ease of selecting for parasite miltefosine resistance in vitro (Seifert et al. 2003),
there is a serious risk of emergence of resistance in relapsing patients (Berman et al.
2006). These observations illustrate the relevance of HIV co-infection surveillance
networks but also strengthen the importance of implementing surveillance of drug
resistance among the identified patients.
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Tools for Epidemiological Surveillance of Drug Resistance
and Treatment OQutcome

Considering the fact that only few drugs are available, with a low number in the
pipeline, it is essential to safeguard the effectiveness of existing drugs. Combina-
tion regimens are under clinical development (van Griensven et al. 2010), but the
drug policy will take several more years to change. Meanwhile, the uninterrupted
supply of quality drugs, the promotion of treatment adherence, and the monitoring
of treatment effectiveness and drug resistance will be pivotal. There is currently no
systematic surveillance of these critical issues in leishmaniasis, as existing, for
instance, for malaria (Guerin et al. 2009), which is — among others — due to the lack
of adequate tools.

Monitoring leishmaniasis treatment effectiveness is complicated by the fact that
the parasites persist after clinical cure of a primary symptomatic episode (Bogdan
2008), and it is clinically well documented that there is a persisting risk of relapse in
the first 6-12 months after treatment. Consequently, clinicians only consider
patients definitely cured if this posttreatment period passes uneventful (Murray
2004; Murray et al. 2005). Given the window of time required to assess clinical
cure, it has been and still is difficult to standardize the clinical definitions of the
major treatment outcomes cure, nonresponse, and relapse for the different forms of
leishmaniasis (Modabber et al. 2007). An adequate laboratory test of cure is also not
available because it is currently unclear which indicators have the best predictive
value of definite clinical cure. Serum antibodies can decrease after successful
treatment as shown with the rk39 test (Braz et al. 2002; Kumar et al. 2001), but
they remain detectable up to several years after cure (De Almeida et al. 2006);
hence, VL relapse cannot be diagnosed by serology (Chappuis et al. 2007). PCR is
extremely sensitive to detect current infections but was shown to be a better marker
of infection than of disease (Deborggraeve et al. 2008); thus, a positive PCR at the
end of treatment would have a low predictive value of treatment outcome. Quanti-
fication of the parasite load by QPCR allows determining infection/disease
thresholds and was proven to have some potential to address this problem, but
further studies are needed to evaluate this tool in various clinical situations
(presentations, treatments, and infecting parasite species) (Antinori et al. 2009;
Mary et al. 20006). Antigen detection tests like the Katex represent a promising
avenue for tests of cure (Sundar et al. 2005), but similarly as with PCR, a too high
sensitivity could decrease their performances. In absence of an adequate laboratory
test of cure, treatment outcome is currently assessed by microscopic evaluation of
parasite load in tissue smears at the end of treatment and subsequent regular patient
follow-up for 6 up to 12 months posttreatment. Hence, monitoring treatment
effectiveness in routine conditions is difficult, and compliance of patients to the
follow-up visits can be poor. Hence, there is a need to develop new approaches to
monitor treatment effectiveness at the program level, like the retrospective cohort
analysis used in tuberculosis programs (Mukherjee et al. 2004).
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Monitoring drug resistance suffers from the same limitations as outlined above
for monitoring treatment efficacy, i.e., there is an acute lack of knowledge and
tools. The in vitro intracellular amastigote-macrophage model is currently com-
monly used for testing drug susceptibility of Leishmania clinical isolates and is
essential for drugs like antimonials, which are only active on the amastigote form of
the parasite (Vermeersch et al. 2009). The screening entails a complex, labor-
intensive, and time-consuming protocol, which involves in vitro infection of pri-
mary macrophages with an infective stage of Leishmania parasites (metacyclic
promastigotes, axenic amastigotes, or ex vivo amastigotes), 3—7 days Sb" exposure
and a final step of microscopical evaluation of the different infections (Neal and
Croft 1984; Vermeersch et al. 2009).

This test should not be considered as a golden standard since it is plagued by many
implementation problems. First of all, there are several standardization problems with
these assays, making interlaboratory comparisons difficult. Protocols differ at the level of
used type of host cells, tested drug concentrations, timing of drugging, duration of drug
exposure, and inclusion (or not) of reference strains for interassay comparison, Further-
more, the significance of the results must be interpreted with extreme care. In vivo, the
response of the infected cells to antimonials leads to a more substantial involvement of
the host immune system to attack the parasites (Mookerjee et al. 2006), resulting in a
synergistic activity between antimonials and the specific T-cell response of the host
(Murray et al. 2000). In comparison, the in vitro system used for susceptibility assays
does not include any immune components and is somehow reductionist. Accordingly,
the parasites may develop various epi-phenotypes under in vivo antimonial pressure that
remain hidden in the in vitro susceptibility assays. This could concern, for instance, (1)
adaptation to the macrophage effectors in the immunological context of the clinical
infection (absent in the in vitro susceptibility assays) or (2) resistance to the reduced form
of the drug, Sb™ (Rijal et al. 2007; Yardley et al. 2006). These epi-phenotypes might
explain the incongruence between parasites’ in vitro antimonial susceptibility and
clinical treatment outcome reported elsewhere (Abdo et al. 2003; Rijal et al. 2007;
Yardley et al. 2006). Further efforts are definitively needed to standardize these intracel-
lular amastigote assays and possibly for upgrading them: activation of the macrophages
with cytokines could be an option, but the system would still be miles away from the
immune involvement in vivo. In parallel, susceptibility assays on extracellular
promastigotes, which are relatively easily grown in vitro, should be developed and
standardized for new drugs like miltefosine that have similar activity on all life stages
of Leishmania. This is currently being explored in the frame of the Kaladrug-R project
(see www.leishrisk.net/kaladrug), and if successful validation ensues, this would seri-
ously facilitate the epidemiological surveillance of parasite resistance against that
specific drug, under conditions of standardization and quality control.

Molecular assays represent a third category of tools relevant for epidemiological
surveillance of treatment failure and drug resistance.

First, as highlighted above, since the infecting Leishmania species is a risk factor
for treatment failure, it is highly recommended to perform species typing, espe-
cially in regions where different species are endemic. While multilocus enzyme
electrophoresis is still considered as the reference method for species typing, we
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highly recommend implementing the new PCR-based assays which are (1) much
simpler to use, (2) better standardized, and (3) directly applicable on clinical
samples without losing sensitivity. The hsp70 PCR-RFLP is currently being
disseminated for this purpose (da Silva et al. 2010; Garcia et al. 2007a; Montalvo
et al. 2010) and might become the future reference method.

Strain fingerprinting assays represent a second class of molecular tools that can
also be relevant for monitoring treatment outcome. Theoretically, they could be
used to distinguish relapse from reinfection in clinical secondary symptomatic
cases, a phenomenon which is poorly studied in leishmaniasis, in contrast to
malaria, for instance (Collins et al. 2006). PCR-RFLP analyses of kinetoplast
DNA are very useful for this purpose because they generate strain-specific patterns
(Laurent et al. 2007). In a recent study on naturally infected dogs treated with
antimonials (da Luz et al. 2009), we found different parasite genotypes in each dog,
and the genotype of a particular dog did not change significantly after successive
treatments. The apparent stability of the genotype strongly contrasted with the
decreasing in vitro SSG susceptibility of the corresponding parasite isolates. This
study provides convincing evidence that short-term treatment of dogs with antimo-
nial leads to enhanced selection of decreased susceptibility.

Molecular assays are also expected to facilitate the detection of drug-resistant
parasites. However, not much is known about the molecular adaptations acquired
by drug resistant parasites, and this impedes the design of such tools. Most
molecular studies on Leishmania drug resistance were done on in vitro-induced
resistant parasites. The identified mechanisms and markers in these “artificial”
drug-resistant parasites cannot a priori be extrapolated to the “natural” drug-
resistant parasites emerging in endemic regions (Maltezou 2010). In natural Leish-
mania populations under treatment pressure, it seems that drug resistance is
emerging frequently through independent events (Laurent et al. 2007), and the
essential molecular adaptation process may not necessarily be uniform throughout
a parasite population. We assessed the molecular heterogeneity of an antimonial-
resistant L. donovani population in Nepal and found that the SSG-resistant pheno-
type is marked by a distinct set of molecular features in two genetic subpopulations.
The identified molecular features further suggested a possible relation between
antimonial tolerance and oxidative stress tolerance, and this was confirmed through
a battery of in vitro susceptibility stress tests (Decuypere 2007). In L. braziliensis
from Peru, we found that the expression of two genes, ODC (ornithine decarboxyl-
ase) and TRYR (trypanothione reductase) was significantly higher in some, but not
all, SbY-resistant parasites. Interestingly, putative markers correlated better with
treatment outcome than with the in vitro susceptibility phenotype (Adaui et al.
2011). We found a similar result in our L. guyanensis study in Brazil, where GSH/
(encoding gamma-glutamylcysteine synthetase) was 3.9-fold overexpressed in
isolates from therapeutic failure patients (11) compared to isolates from clinical
cure patients (14) (Torres et al. 2008). We hypothesized that genetically distinct
parasite populations acquire a different set of molecular adaptations under antimo-
nial treatment pressure, which could complicate the design of widely applicable
molecular surveillance tools (Decuypere 2007; Laurent et al. 2007). The success of
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the targeted molecular studies done so far largely depend on a good foreknowledge
of candidate cellular pathways that may be modified in drug-resistant parasites.
However, there are still many hiatuses in our knowledge on the mode of action of
antileishmanial compounds, the cellular pathways they affect, and the protective
mechanisms the parasite can muster in defense against them. Hence, we believe that
untargeted approaches might be more adequate for studying Leishmania drug
resistance, and recent technological developments have brought some new
perspectives in that respect. The new high-throughput sequencing technologies
and latest mass-spectrometry techniques offer great potential to screen the whole
genome, transcriptome, and metabolome for molecular adaptations that correlate
with drug resistant phenotypes (Dujardin 2009; Scheltema et al. 2010; t’Kindt et al.
2010). Furthermore, this molecular exploration should not only focus on the
identification of markers of the in vitro drug susceptibility phenotype (with all the
possible biases associated with it) but also — and maybe essentially — on the clinical
phenotype. At the end of the day, this is the feature to which health professionals are
confronted in first line.

Conclusions and General Recommendations

Surveillance of treatment effectiveness and drug resistance is a major contributor to
the understanding of the epidemiology of leishmaniasis and is pivotal in the control of
this disease. This chapter highlights the importance of integrating its study in a broad
context; a mathematical modeling approach is definitively needed to assess the
complexity of its dynamics. However, our literature survey also demonstrates how
limited our knowledge is on the epidemiology of treatment effectiveness and drug
resistance. The lack of standardization of study methods is a major problem and
burdens all levels from clinical to experimental research. Research and coordination
platforms are therefore needed. The recently launched Kaladrug-R initiative (see
www.leishrisk.net/kaladrug) is such a platform and aims to develop, evaluate, and
disseminate new tools for the assessment of drug resistance in L. donovani and
innovative methodologies for monitoring Kala-Azar treatment effectiveness under
routine conditions. By providing knowledge and tools relevant for monitoring the
effectiveness of the existing few drugs, this type of initiative should contribute to
their “protection” and establish the bases for their longer-term and more rational use.
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