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Abstract

Background: The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1
isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals
that are central to the design of an effective antibody-based vaccine.

Methods and Findings: We immortalized IgG+ memory B cells from individuals infected with diverse clades of HIV-1 and
selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants
were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated
58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular
(HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of
Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization
specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved
epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A
third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in
the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity.

Conclusions: This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be
isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization
and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-
based vaccine design.
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Introduction

Neutralizing antibodies provide one arm of the adaptive

immune response against the human immunodeficiency virus

type 1 (HIV-1). Several reports demonstrated that the neutralizing

antibody response exerts selective pressure during HIV-1 replica-

tion in vivo, which accounts in part for the extensive variation in the

env gene observed soon after primary infection [1,2]. Furthermore,

selective pressure imposed by neutralizing antibodies has been

demonstrated in a human trial where three neutralizing

monoclonal antibodies (mAbs) administered during HAART

treatment-interruption led to a reduction in viremia followed by

selection of escape mutants [3,4]. Passive transfer studies in

macaques showed that the administration of HIV-1 neutralizing
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mAbs protects against vaginal or intravenous challenge with

SIV-HIV-1 chimeric viruses (SHIV) [5,6,7,8,9]. In some models

protection depended not only on viral neutralization but also on

Fc-mediated antibody effector functions [10,11].

Given the predicted low-titer inoculum driving HIV-1 sexual

transmission, a vaccine capable of eliciting antibodies that

neutralize a broad spectrum of viral strains could potentially

reduce or prevent infection. It has been anticipated that the

identification of broadly neutralizing mAbs from HIV-1 infected

individuals, and the characterization of their cognate epitopes will

be instrumental in the design of immunogens capable of eliciting

such a broad neutralizing response [12]. This idea has led to a

major international cooperative effort within consortia of labora-

tories with complementary expertise in human immunology,

structural biology and vaccine design [13,14].

HIV-1 is characterized by an extraordinary genetic diversity,

reflected by the presence of several clades (subtypes), a fact that

represents a significant impediment to vaccine development. Env is

the most variable HIV-1 gene, with up to 35% sequence diversity

among clades, 20% diversity within clades, and 10% diversity in a

single infected individual [15,16,17]. Several conserved epitopes

have been defined by a small panel of neutralizing mAbs isolated

using different experimental approaches. One epitope that appears

to be relatively conserved and overlaps with the CD4 binding site

(CD4bs) on the surface Env glycoprotein gp120 is recognized by

mAb b12, which is the most potent and broadly-reactive mAb of

such specificity [18,19,20]. This site was recently shown to be a

significant target of neutralizing antibodies present in the sera of

selected patients [21,22]. However, b12 was derived from a phage

library in which heavy and light chains have been randomly re-

assorted, thus its relevance to naturally-occurring B cell responses

in HIV-1 infection is unclear. A second epitope in a carbohydrate-

rich region on the outer domain of gp120 is composed of glycans

recognized by mAb 2G12, which shows an unusual interlocked

VH domain-swapped dimer generating an extended and mono-

valent binding surface [23,24,25,26]. The 2G12 epitope is not

present in the majority of clade C isolates [27], but, of more

concern, no 2G12-like activity has been detected in the sera of

HIV-1 infected individuals [21,22], suggesting that this type of

neutralizing antibody may not be generally amenable to elicitation

by B cells. A third target of the broadly-neutralizing mAb 4E10,

and relatively broad mAbs 2F5 and Z13, is located on the

membrane-proximal external region (MPER) of the transmem-

brane glycoprotein gp41 [28,29,30,31]. As with 2G12, MPER-

specific neutralizing antibodies are infrequently encountered in the

sera of HIV-1-infected individuals [21,32,33], potentially reducing

their relevance to vaccine development strategies. Moreover,

MPER-specific mAbs have features that suggest they are products

of autoreactive B cells, casting doubts over the possibility of

inducing such antibodies by vaccination [34]. A fourth target of

neutralizing mAbs is the V3 loop, which is immunogenic but also a

highly variable region involved in Env-coreceptor binding.

Antibodies to the V3 loop, such as mAbs 447-52D and F425-

B4E8, are mostly effective against neutralization sensitive (Tier-1)

viruses and have generally a limited breadth of reactivity almost

exclusively specific for clade B viruses, reflecting their provenance

from clade B-infected individuals [11,35,36,37]. A cluster of

human V3 mAbs raised from B cells derived from non-B clade-

infected individuals showed variable neutralizing activity for two

AG and two C clade primary isolates, although these were

particularly neutralization sensitive [38]. Finally, the CD4-induced

(CD4i) site has been described as a neutralization epitope

primarily on Tier-1 isolates with limited accessibility on Tier-2

isolates [39]. Very recently, the isolation and partial characteriza-

tion of two related MAbs from a clade A-infected donor that

appear to have very broad and potent neutralization profiles was

reported [40]. These MAbs recognize a discontinuous epitope only

expressed on the native Env trimer, made up of segments of the

CD4i, V2 and V3 loops. This publication is the first to provide

new broadly neutralizing reagents from a non-clade B donor and

provides proof-of-principle that new neutralization specificities

remain to be discovered on HIV-1 Env.

Since the number of existing neutralizing mAbs with a relatively

broad neutralization profile is very limited, and those described to

date, with the exception of the Walker et al MAbs were isolated

from clade B virus-infected donors, we undertook the task of

isolating new human mAbs from HIV-1-infected donors. Our

primary aims were: i) to isolate novel MAbs with cross-clade

neutralizing activity from non-B clade donors; ii) to analyze the

memory B cell repertoire in a representative panel of predomi-

nantly non-B clade-infected individuals. By using an improved

memory B cell immortalization method [41], combined with high-

throughput parallel screening with a panel of recombinant Env-

based antigens, we isolated a panel of 58 human mAbs which we

have characterized with regard to epitope specificity and breadth

of neutralization. We have more fully characterized three mAbs

from this panel that demonstrated complementary and relatively

broad cross-clade neutralizing profiles that target the gp120

CD4bs and the V3 crown, and the gp41 heptad repeat 1 (HR-1).

Materials and Methods

Ethics Statement
The study was approved by the ethical committee at Institute of

Tropical Medicine and Queen Mary University. All participants

gave written informed consent.

Cells and Reagents
TZM-bl and HOS.CD4-R5 cells were obtained from the NIH-

AIDS Research and Reference Reagent Program (ARRRP).

293T/17 cells were obtained from the ATCC. MAbs 2G12 [29],

2F5, 4E10 [42], b12 [18], 3D6 [43] and 5F3 [29] were obtained

from Polymun Scientific GmbH (Austria), as part of the

Collaboration for AIDS Vaccine Discovery program.

Viruses
The clade B and C HIV-1 Reference Panels of Env clones

[44,45] and the SF162 clone were obtained through the NIH-

ARRRP. Other non-clade B isolates were provided by the

Comprehensive Antibody Vaccine Immune Monitoring Consor-

tium (CA-VIMC). HIV-1 subtype B clone JRFL was provided by

Dennis Burton (Scripps Institute, La Jolla, US). Pseudoviruses

were produced by co-transfecting HEK293T/17 cells with the env-

expressing plasmids and the complementing viral-genome reporter

gene vector, pNL4-3.Luc+.E2R+ (kindly provided by John R.

Mascola, VRC, NIAID, NIH, US).

Recombinant HIV-1 Envelope Glycoproteins
Recombinant gp140 from HIV-1 isolates 92UG37, CA18,

CN54, k530, UG21 and BR29 were provided by Simon Jeffs

(Imperial College London, UK). Recombinant gp120 from HIV-1

isolates CM235, 93TH975, BaL and SF162 were obtained

through the NIH-ARRRP, while gp160 from isolates MN and

LAI were purchased by Prospec-Tany Technogene LTD (Israel).

Recombinant YU2 gp120 and the two mutants D368R and I420R

were provided by John R. Mascola and Richard Wyatt (VRC,

NIAID, NIH, US). Recombinant soluble CD4 and recombinant

gp120 from HIV-1 IIIB and CN54 were obtained from the

HIV-1 Neutralizing Antibodies
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CFAR, NIBSC (UK). The recombinant ectodomain of gp41 from

isolate HxB2 (amino acids 541-682) was purchased by Vybion Inc.

(US). HR-1 is a modified version of gp41 [46] exposing residues

HLLQLTVWGIKQLQARILAVE (HxB2). 5HB was produced as

described [47]. HR-1-FP comprises gp41-residues 512-594 (HxB2)

including the fusion peptide and HR-1. HR-2 (HxB2) comprises

gp41 residues 591–693 (HxB2) including the cys-loop region, HR-

2 and MPER flanked by two coiled coil regions.

Patient Selection and MAb Isolation
Patients were selected for inclusion into the study on the basis of

the clade of their infecting virus (predominantly non-B clade) and

on the ability of their plasma to neutralize a panel of HIV-1

primary isolates using two differerent assays. At the Institute

for Tropical Medicine a panel of 4 primary A strains (VI191,

92UG37, VI820, VI 1031), 4 primary C strains (VI829, VI882,

VI1144, VI1358) and 6 primary CRF02 strains (VI1090, VI2680,

CI20, CA18, VI1380, VI2727) was used to select patients with

.80% neutralization was measured at a 1/20 dilution of plasma.

The plasma dilution was mixed with virus for 24 hours and

absorbed to PHA/IL-2 stimulated freshly isolated PBMC for

1 hour. Virus-antibody mixture was then removed by extensive

washing and p24 ELISA was performed after 14 days of culture to

determine neutralization. At Queen Mary University of London,

the TZMbl-based recombinant pseudovirus assay was employed

with a selected panel of Tier 2-type clade A, B, C, CRF02_AG,

_AE, F and BF viruses to measure .50% neutralization at a 1/20

dilution. MAbs were isolated using a previously described

improved EBV immortalization method [41]. Culture superna-

tants were harvested 14 days after immortalization and assayed in

parallel for binding to trimeric gp140 proteins (UG37, clade A and

CN54, clade CRF07_BC) [48], monomeric gp120 (CN54,

CRF07_BC and IIIB, clade B) and gp41 recombinant ectodomain

(HxB2, clade B). Those that were positive were then subcloned

and grown up on a large scale for supernatant purification. The

purity of all mAb preparations was assessed using a chromogenic

LAL endotoxin assay (Genscript) and endotoxin levels were always

,0.05 EU/ml.

Binding Assays
A standard ELISA was used to determine binding of mAbs to

the panel of HIV-1 Envs. Briefly, ELISA plates were coated with

each Env antigen, blocked with 10% FCS in PBS, incubated with

human mAbs and washed. Bound mAbs were detected by

incubation with AP-conjugated goat anti-human IgG (Southern

Biotech). Plates were then washed, substrate (p-NPP, Sigma) was

added and plates were read at 405 nm. The relative affinities of

mAbs binding to respective coated antigens were determined with

ELISA by measuring the concentration of each mAb required to

achieve 50% maximal binding at saturation (K50). The ability of

mAbs to inhibit binding of sCD4 to gp120 or gp140 was evaluated

by ELISA. Serial dilutions of mAbs were pre-incubated with

gp120 (or gp140) and added to plates pre-coated with sCD4. After

1 h plates were washed and incubated with sheep polyclonal

antibody D7324 (Aalto Bio-Reagents) followed by washing,

incubation with AP-conjugated rabbit anti-sheep IgG antibody

(Abcam, Cambridge, UK), extensive washing and detection as

above.

Competition Assay
MAbs were purified on Protein G columns (GE Healthcare) and

biotinylated using the EZ-Link NHS-PEO solid phase biotinyla-

tion kit (Pierce). The competition between unlabeled and

biotinylated mAbs for binding to immobilized Env antigens was

measured by ELISA. Briefly, unlabelled competitor mAbs were

added at different concentrations. After 1 h biotinylated mAbs

were added at a concentration corresponding to the 70–80% of

the maximal OD level. After incubation for 1 h, plates were

washed and bound biotinylated mAb was detected using AP-

labeled streptavidin (Jackson Immunoresearch). The percentage of

inhibition was tested in triplicates and calculated as follow:

(12[(ODsample-ODneg ctr)/(ODpos ctr - ODneg ctr)])6100.

Peptide Scanning
Overlapping linear 15-mer and cyclized 15-mer peptides based

on gp160 of HIV-1 UG037 and 93MW965 and the overlapping

15-mer peptides of gp41 strain SF162 were synthesized on

polypropylene support (minicards), and were tested for reactivity

with mAbs as described [49,50]. Pepscan peptide binding analysis

was carried out by an ELISA-based format in which the colored

substrate was quantified with a charge-coupled device (CCD) -

camera and an image processing system. The values mostly ranged

from 0 to 3000, a log scale similar to 1 to 3 of a standard 96-well

plate ELISA-reader.

Neutralization Assays
A single-cycle infectivity assay was used to measure the

neutralization of luciferase-encoding virions pseudotyped with

the desired HIV-1 Env proteins, as previously described [51].

Briefly, appropriate dilutions of the virion-containing culture

supernatants were pre-incubated at 37uC for 1 h with mAbs at

various concentrations. The virus-mAb mixtures were added to

HOS-CD4-CCR5 cells and incubated for 3 days at 37uC. A

similar protocol was used for supernatants screening using TZM-bl

cells [45]. The cells were then lysed with Britelite reagent (Perkin-

Elmer) and the relative light units in the cell lysates were

determined on a luminometer microplate reader (Veritas, Turner

Biosystems). The 50% inhibitory dose (IC50) was defined as the

sample concentration at which relative luminescence units were

reduced 50% compared to virus control wells. Some of the

neutralization data for the reference mAbs b12, 2G12, 2F5 and

4E10 are taken from previous analyses [41,42] carried out under

identical standardized conditions to those used for the new mAbs

reported here. A multi-cycle virus replication assay was used to

measure the neutralization of replication competent luciferase-

encoding viruses in 5.25.EGFP.Luc.M7 cells [52]. This cell line is

a genetically engineered clone of CEMx174 that expresses

multiple SIV and HIV-1 entry receptors (CD4, CCR5, CXCR4,

GPR15/Bob) [53]. For the neutralization assay, 5000 tissue

culture infectious dose 50 (TCID50) of virus was incubated with

multiple dilutions of test sample in triplicate for 1 hr at 37uC in a

total volume of 150 ml in 96-well flat-bottom culture plates. A

100 ml suspension of cells (56105 cells/ml of growth medium

containing 25 mg DEAE dextran/ml) was added to each well.

Plates were incubated until approximately 10% of cells in virus

control wells were positive for GFP expression by fluorescence

microscopy (approximately 3 days). At this time, 100 ml of cell

suspension was transferred to a 96-well white solid plate (Costar)

for measurements of luminescence using the Britelite Lumines-

cence Reporter Gene Assay System (PerkinElmer Life Sciences).

Results

Isolation of HIV-1 Neutralizing mAbs from Memory B
Cells of Infected Donors

Plasma samples were obtained from patients entered into the

Antwerp and London cohorts who were infected with a variety of

HIV-1 clades. Patients were selected for MAb preparation on the

HIV-1 Neutralizing Antibodies
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basis of the clade of their infecting virus (predominantly non-B

clade), and on the ability of their plasma to neutralize, to .80% at

a 1/20 dilution, members of a selected panel of Tier 2-type clade

A, B, C, CRF02_AG, AE, F and BF viruses in both a PBMC-

based infectious primary isolate virus assay [54] and in the

TZMbl-based recombinant pseudovirus assay [55]. In some cases

only a restricted plasma neutralization analysis was possible due to

limiting amounts of patient plasma. Twelve and nine infected

donors from the London and Antwerp cohorts respectively were

selected for B cell immortalization. Summarized clinical and

virological data including HIV-1 clade, viremia, CD4+ T cell

counts, therapy and breadth of neutralization are shown in

Table S1.

IgG+ memory B cells were isolated from the selected donors and

immortalized with EBV in the presence of CpG as described [41].

The immortalization efficiency of memory B cells from HIV-1

patients was significantly lower than that of non-HIV-1-infected

donors (3% versus 20%, n = 21, p,0.001). This finding may be

explained by the recent report that HIV-specific B cells are present

within a population of ‘‘exhausted’’ memory B cells, characterized

by the expression of inhibitory receptors and low levels of CD21

[56,57]. To maximize detection of antibodies recognizing conserved

features, cell culture supernatants were screened by parallel high-

throughput ELISAs using five recombinant HIV-1 Env proteins,

including trimeric gp140 [48], monomeric gp120 and gp41

recombinant ectodomains. From the 21 donors interrogated we

selected 58 B cell clones producing mAbs that bound to at least one

of the screening antigens. The mAbs were purified and further

characterized for binding specificity and neutralizing activity using

an extended panel of recombinant Env proteins and pseudoviruses

representative of several HIV-1 clades with diverse coreceptor

usage, geographic origin and conformation.

The binding data for each mAb are displayed in Figure S1 and

expressed as half-maximal binding concentrations at equilibrium

(K50), which approximate to the equilibrium dissociation constants

[58]. Of the 58 mAbs, 37 bound to gp120 and 21 to gp41. Several

gp120-specific and gp41-specific mAbs showed a broad pattern of

reactivity with most recombinant proteins, although usually within

a broad range of K50 values. Overall, there was no relationship

between the donor’s HIV-1 clade and the clade specificity of the

isolated mAbs.

The neutralizing activity of the mAbs was initially measured

using 20 pseudotyped HIV-1 primary isolate envs characterized by

different sensitivity to neutralization [44,45]. The mAbs were

tested at a fixed concentration (100 mg/ml) in a luciferase-based

neutralization assay using HOS-CD4.R5 as target cells. Out of the

46 mAbs tested against the whole virus panel, 37 showed

neutralizing activity on at least one isolate (Figure 1A). Three

mAbs, HJ16, HGN194 and HK20, stood out for their breadth of

neutralizing activity, neutralizing 10, 11 and 17 out of the 20

pseudoviruses, respectively (Figure 1A). These mAbs were further

characterized in the same assay for their potency (Figure 1B).

HJ16 showed high neutralizing activity, while HGN194 and

HK20 were less potent. In addition, while most antibodies

preferentially neutralized Tier-1 isolates, HJ16 preferentially

neutralized Tier-2 isolates (Figure 1A-B).

Since it has been reported that HIV-1 neutralization is target

cell type-sensitive [59,60], we next used TZM-bl as target cells

and titrated the mAbs against a larger panel (n = 46) of

predominantly (38/46) Tier-2 pseudoviruses (Table S2). Gener-

ally the results obtained with the extended panel confirmed the

previous results and showed that several mAbs had potent

neutralizing activity, with IC50 values ,20 ng/ml. A striking

exception was HK20, which neutralized 17/20 pseudoviruses in

the HOS-based assay, but only 3/46 pseudoviruses in the TZM-bl

based assay.

We established the breadth of neutralization of these three novel

mAbs by comparing them in the TZMbl assay with the five mAbs

currently considered to be the most broadly reactive, namely b12,

2G12, 2F5, 4E10 and 447-52D. We used a large multi-clade panel

comprising 10 Tier-1 and 82 Tier-2 isolates including clade B

early-transmitted viruses [61]. The three new mAbs showed a

pattern that was clearly distinct from that of previously described

mAbs (Figure 2). In particular, HGN194 neutralized with high

potency all Tier-1 viruses from clade A, B and C and 11% of Tier-

2 viruses. By contrast HJ16 neutralized only 1 out of 10 Tier-1

viruses, but neutralized 39% of Tier-2 viruses. Thus HJ16 is

comparable to b12 and 2F5 in terms of percentage of Tier-2

isolate neutralization and is superior to 2G12 and 447-52D. 4E10,

as previously reported [27,41] showed an extremely broad pattern

of reactivity. Taken together the above results indicate that novel

neutralizing mAbs can be isolated from memory B cells of non-

clade B HIV-1-infected individuals, some of which display

relatively broad neutralizing activity. Since one of our primary

aims was to isolate and characterize novel MAbs with unusually

broad and potent neutralization activity, we focused our attention

on HJ16, HK20 and HGN194.

HJ16, a Neutralizing mAb Binding a Novel Epitope
Proximal to the CD4bs

MAb HJ16, derived from a donor infected with clade C, has a

unique neutralization profile with potent and selective neutralization

of multiple Tier-2 pseudoviruses (Figure 1B and Figure 2). When

compared with the CD4bs-specific mAb b12 for gp120 binding,

HJ16 showed similar binding curves (Figure 3A) and inhibited to a

comparable extent the binding of gp120 to solid-phase sCD4

(Figure 3B, IC50 values of 1.57 and 1.16 mg/ml, respectively).

However, cross-competition analysis of HJ16 and b12 for binding to

gp120 revealed incomplete heterologous inhibition, with plateau

values of approximately 80% (Figure 3C-D). These results suggest

that HJ16 and b12 recognize related but non-overlapping CD4bs-

proximal epitopes. To further characterize HJ16 specificity we

measured its binding to two YU2 gp120 mutants: the D368R

mutant, which is not bound by CD4 or CD4bs-specific mAbs [21]

and the I420R mutant, which is not recognized by CD4i-specific

mAbs [62]. As already reported, b12 bound the I420R CD4i

mutant, but failed to recognize the D368R CD4bs mutant. By

contrast, HJ16 bound both mutants and indeed bound better to

the D368R CD4bs mutant compared to the wild-type molecule

(Figure 3E-F). Attempts to map the epitope by Pepscan analysis

using overlapping linear peptides were unsuccessful (not shown),

consistent with HJ16 recognition of a discontinuous epitope.

HJ16 and b12 neutralized 1/10 and 8/10 Tier-1 and 32/82

and 35/82 Tier-2 pseudoviruses, respectively (Figure 2). Inter-

estingly, 22/32 Tier-2 isolates neutralized by HJ16 were not

neutralized by b12, and reciprocally 24/35 Tier-2 isolates

neutralized by b12 were not neutralized by HJ16. Another

interesting finding is that HJ16 does not discriminate between

clades as much as b12, 2G12 and 2F5 (e.g. b12 and 2G12 rarely

neutralize clade A isolates while 2F5 and 2G12 rarely neutralize

clade C isolates, Table S3). These results reveal a largely non-

overlapping pattern of reactivity of HJ16 and b12 and suggest that

the combination of these two mAbs could be effective against a

dominant fraction of HIV-1 isolates (57/82, i.e. 69%). Taken

together these results are consistent with HJ16 recognition of a

surface proximal to the CD4bs domain within gp120, but with an

epitope completely distinct from that recognized by b12.

HIV-1 Neutralizing Antibodies
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HGN194, a Broadly Neutralizing mAb That Binds to the
V3 Crown

MAb HGN194, isolated from a donor infected with

CRF02_AG clade, neutralized 11/20 pseudoviruses in the

HOS-based assay and 19/92 pseudoviruses in the TZM-bl-based

assay. Of note, HGN194 neutralized all Tier-1 isolates tested

(10/10 neutralized) across clades A, B, C and recombinant AG

and BC. Using Pepscan analysis with linear and cyclic peptide

libraries of gp120 the epitope recognized by HGN194 was

mapped to the sequence RRSVRIGPGQTF in the crown of the

V3-loop (Figure 4A). Similarly, the epitope of 7 additional gp120-

specific mAbs was mapped to the same V3 region using different

Figure 1. Neutralization of 20 HIV-1 isolates in HOS.CD4-R5 cells by a panel of human mAbs. (A) 46 mAbs (upper rows) were purified and
tested in triplicates at a fixed concentration (100 mg/ml; *50 mg/ml and **25 mg/ml) for their capacity to neutralize 20 HIV-1 pseudoviruses (left
columns) representing 6 different clades and both Tier-1 and Tier-2 isolates using HOS.CD4-R5 as target cells. Indicated is also the donor’s HIV-1 clade.
White, neutralization below 50%; yellow, 51–69%; orange, 70–89% and red, 90–100% neutralization. VSV-G pseudotyped HIV-1 was also tested as a
negative control. (B) HK20, HGN194 and HJ16 were tested in parallel with b12, 2G12, 2F5 and 4E10 for their capacity to neutralize 20 HIV-1
pseudoviruses representing 6 different clades and both Tier-1 and Tier-2 isolates using HOS-CD4.R5 cells as in (A). Shown are IC50 values in mg/ml.
-, indicates IC50 values .100 mg/ml.
doi:10.1371/journal.pone.0008805.g001
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Figure 2. Neutralization of 92 HIV-1 isolates in TZM-bl cells by HK20, HGN194, HJ16. HK20, HGN194 and HJ16 were tested in parallel with
b12, 2G12, 2F5, 4E10 and 447-52D for their capacity to neutralize 92 HIV-1 pseudoviruses representing 7 different clades and both Tier-1 and Tier-2
isolates using TZM-bl as target cells. Shown are IC50 values in mg/ml. -, indicates IC50 values .50 mg/ml, -* mAb tested starting from 25 mg/ml, nd,
not determined. MuLV pseudotyped HIV-1 was also tested as a negative control.
doi:10.1371/journal.pone.0008805.g002
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peptide libraries generated from the sequence of the isolate to

which each mAb was mostly reactive (Figure 4A). The minimal

sequence recognized by these mAbs ranged from 7 to 17 amino

acids and, with a single exception, comprised the G(A)PGR/Q/K

sequence, which is modeled to interact with CCR5 or CXCR4

during the viral entry process [63]. However, in contrast to

HGN194 which neutralizes with high potency all Tier-1 isolates

tested, the other V3-specific mAbs neutralized only a few Tier-1

isolates (Figure 1A-B and Figure 2), similar to the activity of

other recently characterized V3 loop-specific mAbs derived from

non-B clade infected individuals [38]. We confirmed the

neutralization activity of HGN194 in an M7 cell-based assay

challenged with replication-competent HIV-1 viruses carrying a

Luc reporter [52] and we observed that 3/5 clade B viruses were

neutralized (Table S5).

To better characterize the epitope recognized by HGN194 we

performed a replacement scanning of each position with the 18

complementary amino acids. This analysis revealed only 3 positions

(RRSVRIGPGQTF) where amino acid substitutions abrogated

binding. Remarkably, only one mutation out of the 21 found in viral

isolates (I to M in position 6) affected binding of HGN194

(Figure 4B–C). However, we observed that several HIV-1 isolates

that were not neutralized by HGN194 encoded the same amino acid

sequence shared by other HIV-1 isolates that were neutralized

(Figure 4B). For instance, the epitope RKSVRIGPGQTF

on 93MW965.26, which is strongly neutralized by HGN194 (i.e.

Figure 3. HJ16 binds to a CD4bs epitope distinct from that recognized by b12. (A) Binding of HJ16 and b12 to IIIB gp120 envelope protein.
(B) Inhibition of IIIB gp120 binding to immobilized sCD4 by HJ16 and b12. (C–D) Inhibition of binding of HJ16 (C) or b12 (D) to immobilized gp120 by
increasing concentrations of unlabeled HJ16 or b12. (E–F) Binding of b12 (E) or HJ16 (F) to YU2 wt gp120 and to the CD4i (I420R) or CD4bs (D368R)
mutant YU2 proteins. Shown is mean 6 SD of triplicates.
doi:10.1371/journal.pone.0008805.g003
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Figure 4. Epitope mapping of V3-specific mAbs by linear and circular peptide scanning. (A) Eight gp120-specific mAbs were mapped with
linear and cyclic peptides to the V3 region. Shown is the HIV-1 isolate used for the mapping, the minimal epitope, the binding breadth expressed as
number of recombinant Env proteins out of the 16 tested, and the fraction of isolates neutralized in the HOS and TZMbl-based neutralization assays,
respectively. (B) Alignment of the region corresponding to the epitope recognized by mAb HGN194 in 44 HIV-1 isolates. Co-receptor binding residues
are bold. Highlighted in grey are the isolates neutralized by HGN194 either in the TZMbl-based or in the HOS-based assays. (C) Replacement analysis
at positions R(307), S(308), V(309), R(310), I(311), G(312), Q(315), T(316 and F(317) of the epitope recognized by HGN194. Shown is the binding to 92
peptides carrying various amino acid substitutions at positions critical for maintenance of MAb binding. The bars represent ELISA values of HGN194
binding with the wt peptide (red) and the variant peptide (black). The amino acid replacements corresponding to V3 sequences from all isolates
shown in (B) are highlighted with green bars. The binding of antibody to each peptide was tested in a PEPSCAN-based ELISA. Numbering according
to HIV-1 HXB2.
doi:10.1371/journal.pone.0008805.g004
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IC50 ,0.02 mg/ml), is shared with Du422.1, ZM197M.PB7 and

Du172.17, isolates not neutralized by HGN194. This implies that

the HGN194 V3 epitope is unavailable for antibody recognition on

the assembled trimer of these non-neutralized isolates.

Taken together these results indicate that HGN194 has unusual

potency and breadth for a V3-specific monoclonal antibody. Of note,

HGN194 appears to have a broader reactivity than 447-52D since it

neutralizes all Tier-1 isolates and 11% of Tier-2 isolates, while 447-

52D neutralizes 88% of Tier-1 and 4% of Tier-2 isolates (Figure 2
and Table S3). Another V3 mAb with unusual breadth of activity is

F425-B4e8 [37]. We have not compared HGN194 with F425 here,

but F425-B4e8 appears somewhat broader than 447-52D, neutraliz-

ing 1 clade C and 2 clade D pseudoviruses [37]. Further comparison

between F425-B4e8 and HGN194 is difficult as different viruses and

assays were used to determine neutralization breadth and potency.

HK20, an HR-1 Specific mAb with Target Cell-Specific
Neutralizing Activity

HK20 was initially characterized as a gp41-specific mAb with

broad neutralizing activity in the HOS-based assay but lacking robust

activity in the TZM-bl assay. To map the epitope, we tested HK20

against all overlapping 15-mer peptides of the extracellular region of

HIV-1 gp41. HK20 bound peptide QQHLLQLTVWGIKQL that

overlaps the hydrophobic pocket sequence of HR-1 (Figure 5A).

The specificity of HK20 was confirmed by immunoprecipitation of

the 5-helix bundle (5HB) construct [47] and of a trimeric HR-1

construct that includes the gp41 fusion peptide, indicating that the

fusion peptide does not interfere with HK20 binding (Figure 5B). In

ELISA, HK20 bound to 5HB and HR-1 gp41 constructs with K50

values of 210 and 95 ng/ml, respectively and also to the gp41

ectodomain, although with lower avidity (1.27 mg/ml) (Figure 5C), a

Figure 5. HK20 binds to the HR-1 region within gp41. (A) HK20 binding at 4 ug/ml to all overlapping linear peptides (15-mer peptides
overlapping by 14 residues) spanning the gp41 sequence of the HXB2 isolate. Numbers at X-axis denote the first amino-terminal residue of the 15-
mer gp41 peptide (numbering according to HIV-1 HXB2 sequence). Y- axis similar to Figure 4C (B) Immunoprecipitation of HR-1, 5HB and HR-1-FP
constructs in the presence (+) or absence (2) of HK20 mAb. Proteins were separated in 10% polyacrylamide gels under reducing conditions and
stained with Coomassie blue. C, HK20 mAb alone; MW, molecular weight. (C) HK20 binding to gp41 constructs by ELISA. (D–E) Neutralization of
96ZM651.2 (D) and CH064.20 (E) HIV-1 primary isolates by HK20 IgG and Fab fragments in a HOS-based assay.
doi:10.1371/journal.pone.0008805.g005
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finding that may be due to the partial unfolding of solid phase-bound

gp41. Taken together, the above results indicate that HK20

recognizes a highly conserved site within the HR-1 region of gp41.

Since HR-1 occupies a restricted surface only transiently

exposed during the HIV-1 entry process, we hypothesized that

accessibility of the HK20 target epitope might be limited by the

size of an IgG molecule. We therefore compared intact IgG and

Fab fragments of HK20 for their capacity to neutralize a panel

of 22 pseudoviruses in the HOS-based assay. The HK20 Fab

fragments showed markedly increased breadth and potency

compared to IgG, being able to neutralize 21/22 isolates with

IC50 values ranging from 0.01 to 5.7 mg/ml (Figure 5D-E and
Table S4). By contrast, HK20 IgG neutralized 19/22 isolates

with IC50 values ranging from 1.46 to 84 mg/ml. In addition,

when the HK20 Fab fragment was tested in the TZM-bl assay it

neutralized 10 out of 33 isolates with IC50 values ranging between

0.4 and 8.8 mg/ml (Table S2), thus suggesting that the lack of

activity observed with HK20 IgG was possibly associated to a

different susceptibility of this cell line to this type of entry

inhibitors. Overall, these findings suggest that the reduced size of

the Fab molecule allows increased access to the HR-1 region and

imply that HR-1 accessibility is largely dependent on the target cell

used. This is similar in concept to the enhanced neutralization

profiles of Fab and ScFv specific for the CD4i surface [39]. Further

studies using M7 cells [52] challenged with replication-competent

HIV-1 viruses carrying a Luc reporter showed that HK20 exhibits

broad neutralization consistent with the results from the HOS cell

assay but unlike the TZM-bl assay, being able to neutralize 4 out 5

viruses tested (Table S5).

Broad Coverage of gp41 and gp120 Epitopes
The epitopes recognized by the 55 remaining mAbs were

mapped using three experimental approaches: i) cross-competition

against mAbs of known specificity or soluble CD4; ii) binding to

gp120 mutants or gp41 constructs representing different confor-

mational intermediates; iii) Pepscan analysis. The results of the

analysis performed on the gp120-specific and gp41-specific mAbs

are presented in Table 1 and Table 2, and the data are

summarized in a pie chart in Figure 6.

Thirty-seven mAbs bound to gp120 targeting primarily the

CD4bs and the V3 loop and to a lesser extent the CD4i site

(Table 1). A first group of mAbs was assigned to the V3 loop

based on cross-competition with two V3 loop specific mAbs

(HR10 and HGA9). This group comprised 8 mAbs, which were

already mapped to the V3 loop using the Pepscan analysis

approach, and 7 additional mAbs that were not analyzed by

peptide scanning (i.e. HGF9, HGT4, HGP21, HGP51, HGW48,

HGD129 and HGP27). Four mAbs (HX44, HGP105, HGW7,

HGY38) reacted with wt and CD4bs YU2 mutants but failed to

bind the CD4i mutant, and therefore were assigned to the CD4i

cluster. Notably, one mAb (HGP68) was mapped by Pepscan

analysis to a novel epitope in the V2 loop (TVYALFYRLDIVP)

and neutralized 4 Tier-1 isolates (Table S2). Fifteen other mAbs

were assigned tentatively or conclusively to the CD4bs based on

their capacity to inhibit gp120-sCD4 binding. Most of these mAbs

competed other CD4bs-specific mAbs, such as b12 and HJ16,

while in some cases this assay could not be performed due to lack

of epitope expression on the gp120 proteins used. Furthermore,

this group of mAbs showed variable reactivities with the YU2

mutants. While most of them did not bind the D368R mutant

similar to b12, others including HJ16, bound this mutant avidly. In

addition, most of these new CD4bs-specific mAbs also showed

decreased binding to the CD4i mutant, suggesting that they may

span a broader, as yet undescribed region that includes elements of

the CD4bs and CD4i sites. Finally, for 2 mAbs these analyses did

not provide any relevant information.

Twenty-one mAbs bound to gp41 by targeting primarily the

immunodominant C-C region, the HR-1 and the region

recognized by 5F3 mAb [64] (Table 2). MAbs HGK129,

HGN146 and HGN35 were assigned to the C-C loop since they

competed with 3D6 [43], reacted with an HR2 construct and

recognized synthetic peptides within this region. MAbs HGW17

and HGY25 were provisionally assigned to the C-C region since

they competed with 3D6. These data are consistent with the

immunodominance of the C-C region and with the notion that the

antibody response against this region overlaps with the 3D6

epitope. Several mAbs competed with 5F3 and HK20, and bound

both the HR-1 and 5HB constructs, suggesting that they may bind

between the fusion peptide and the HR-1 region. HGB33 was

provisionally assigned to the HR-1 region according to competi-

tion with HK20 and binding to the 5HB construct. Other mAbs

bound specifically the 5HB construct but did not compete with

any of the mAbs tested, thus indicating that the complete HR-1

coiled coil region exposed in 5HB harbors antibody epitopes

available for B cell recognition in the gp41 pre-hairpin

conformation [65,66]. The concomitant binding to recombinant

gp41 suggests that the latter may partially resemble the gp41 pre-

fusion state. Of note, three gp41 binding mAbs (HGP40, HGP48

and HGY50) neither competed with any of the mAbs tested, nor

bound to any constructs representing pre-hairpin conformations or

native gp140 (Figure S1), indicating that they recognize as yet

uncharacterized regions that are only available in the recombinant

gp41 protein. Interestingly, mAb HGF24 was assigned by Pepscan

analysis to an epitope in the C-terminal region of HR-2

(TNLIYTLIEESQN), proximal to the 2F5 epitope, and neutral-

ized 4 Tier-2 isolates (Table S2). This mAb competed with HK20

for gp41 binding, in spite of their distinct cognate specificities (HR-

2 and HR-1, respectively). This finding would be consistent with

the proximity of HR-1 and HR2 in the six-helix bundle structure.

Finally, although the gp41 protein used in the primary screening

includes the 2F5 and 4E10 epitopes, no MPER specific mAbs were

isolated, reinforcing the idea that this portion of gp41 is poorly

immunogenic in humans [21,22]

In conclusion, regardless of their limited breadth of neutraliza-

tion, this extended panel of human mAbs may represent a useful

tool for understanding the molecular basis of Env recognition in

humans.

Discussion

Using an improved EBV immortalization method combined

with a broad screening strategy we isolated from memory B cells of

HIV-1 infected donors 58 mAbs that cover an extensive antigenic

surface of Env. Of these, 37 neutralized at least one of the isolates

tested and 3 mAbs in particular bound to the CD4bs, V3 crown

and HR-1, showing considerable neutralizing breadth against a

panel of HIV-1 pseudoviruses of different clades and spanning

Tier-1 and Tier-2 isolates.

Several studies have questioned the existence of individual broadly

neutralizing antibody specificities as part of a normal immune

response to HIV-1 infection. In this respect, b12 was isolated from a

phage library, while 2F5, 4E10 and 2G12, although isolated from

memory B cells, do not appear to have a counterpart in human sera

[22]. In a recent study, Nussenzweig and coworkers used trimeric

gp140 to isolate antigen-binding memory B cells from which

500 antibody sequences were retrieved by single-cell PCR [62].

Surprisingly, although the B cell donors had broadly neutralizing

serum activity, none of the mAbs isolated had this property. This
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raised the possibility that broad serum neutralizing activity results

from multiple clonal responses each of unique epitope specificity but

restricted breadth of viral strain recognition. However, an alternative

interpretation might be that since available recombinant trimeric

antigens vary in structure, the ‘bait’ used for B cell isolation was not

optimal for enriching those secreting neutralizing antibodies. Our

results indicate that monoclonal antibodies with a limited spectrum

of neutralizing activity can be easily isolated, while those with a

broad pattern of cross-clade reactivity are rare, in line with the study

of Walker et al [40] and consistent with inferences from serum

neutralization specificity mapping analyses [21]. In this respect our

study demonstrates the feasibility of the EBV immortalization

method, which is limited only by the size of the blood samples

obtained (20–50 ml of peripheral blood).

Table 1. Epitope mapping of gp-120-specific mAbs.

Cross-competition with: Binding to: Neutralization

mAbs HR10 HGA9 HJ16 b12 2G12 sCD4 YU2 wt YU2 I420R YU2 D368R Specificity HOS TZM-bl

HGF9 + +/2 2 2 2 2 2 2 2 V3 4/20 6/46

HGT4 + +/2 2 2 2 2 2 2 2 V3 2/20 2/36

HGA13 + +/2 2 2 2 2 + + + V3 2/3 nd

HGA49 + +/2 2 2 2 2 + + + V3 5/20 8/46

HGA9 + + 2 2 2 2 + + + V3 7/20 11/46

HGD129 x + 2 2 2 2 + + + V3 3/20 7/46

HGD65 x + x x x 2 + + + V3 6/20 7/46

HGI95 + + 2 2 2 2 + + + V3 9/20 8/46

HGN194 + + 2 2 2 2 + + + V3 11/20 19/92

HGP21 x + x x x 2 + + + V3 4/20 5/46

HGP51 x + x x x 2 + + + V3 4/20 5/46

HGW48 2 + 2 2 2 2 + + + V3 6/20 nd

HR10 + + 2 2 2 2 + + + V3 8/20 9/46

HZ74 + + 2 2 2 2 + + + V3 6/20 12/46

HGP27 2 + 2 2 2 2 + +/2 + V3 1/3 nd

HX44 2 2 2 x x 2 + 2 + CD4i 3/20 2/46

HGP105 2 2 2 x x 2 + 2 + CD4i 1/20 1/46

HGW7 2 2 2 x x 2 + 2 + CD4i 1/20 nd

HGY38 2 2 2 x x 2 + 2 + CD4i 2/3 nd

HGD14 x 2 x + 2 +/2 + 2 2 CD4bs, 2/20 5/46

HR15 2 2 2 x 2 +/2 2 2 2 CD4bs, 1/3 nd

HGF12 2 2 2 2 2 +/2 + + + CD4bs, 0/3 0/46

HGI46 x 2 x x 2 +/2 + +/2 + CD4bs, 1/20 5/46

HGI75 2 2 +/2 x 2 +/2 + +/2 2 CD4bs, 3/20 2/46

HGP172 2 2 +/2 + 2 +/2 + +/2 2 CD4bs, 4/20 6/46

HGP134 2 2 +/2 x 2 + +/2 2 2 CD4bs 6/20 4/46

HGI111 2 2 +/2 + 2 + + +/2 2 CD4bs 7/20 4/46

HGP31 2 2 x +/2 2 + + +/2 2 CD4bs 2/3 5/45

HGP61 2 2 +/2 x 2 + + +/2 2 CD4bs 3/20 8/46

HGP82 2 2 + + 2 + + +/2 2 CD4bs 7/20 8/46

HGS2 2 2 2 + 2 + + +/2 +/2 CD4bs 7/20 4/46

HGW26 2 2 2 + 2 + + +/2 +/2 CD4bs 3/20 nd

HGZ1 2 2 +/2 + 2 + + +/2 +/2 CD4bs 8/20 10/46

HJ16 x 2 + x 2 + +/2 +/2 + CD4bs 10/20 33/92

HGP68 2 2 2 x 2 2 + +/2 + V2 6/20 4/46

HR12 2 2 2 x 2 2 2 2 2 ? 0/20 2/46

HP12 x 2 2 x 2 2 2 2 2 ? 0/20 0/46

b12 2 2 +/2 + 2 + + + 2 CD4bs 11/20 43/92

Cross competition with biotinylated mAbs of known specificity or sCD4: +, 90–100% inhibition, +/2, 50–90% inhibition, 2, ,50% inhibition. The x indicates that it was
not feasible to evaluate the competition due to the lack of binding to the immobilized gp120 protein. Binding by ELISA to YU2 gp120 wt and mutants in the CD4i and
the CD4bs. Specificity assignment (CD4bs, indicates partial inhibition of sCD4 binding). Shown is also the number of isolates neutralized in the HOS-based and TZM-bl
based assays.
doi:10.1371/journal.pone.0008805.t001
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The characterization of the specificity and neutralizing activity of

this new panel of human mAbs reveal some interesting features of

the human antibody response to HIV-1 within a population of HIV-

1-infected donors. First, most of the gp120-specific mAbs showed

neutralizing activity (37 out of 58), indicating that they bind to sites

available on the functional Env trimer. The selection of a high-

percentage of trimer binding specificities may be a consequence our

use of trimeric Env antigens during the screening of the EVB-B cell

supernatants. The second aspect relates to gp41-specific antibodies,

which, with a few remarkable exceptions, were not neutralizing.

Interestingly the non-neutralizing antibodies bound gp41 in the

context of the recombinant trimer, whereas the most effective

neutralizing mAbs bound to gp41 fusion intermediates.

The three new neutralizing mAbs HJ16, HGN194 and HK20

show some interesting features. HJ16 showed a breadth of

neutralizing activity comparable to, and generally complementary

to b12, which aside from PG9 and PG16 [40] is currently the most

potent of the relatively broad neutralizing antibodies available.

HJ16 also showed selective neutralization of multiple Tier-2

isolates, making it particularly relevant as a template for vaccine

design. HGN194 binds to an extremely conserved epitope in the

V3 crown, and neutralizes all Tier-1, but only 11% of Tier-2

isolates tested. HGN194 showed broader activity than the well-

characterized V3-specific mAb 447-52D against a panel of 92

pseudoviruses. The preference for Tier-1 isolates characteristic of

V3-specific mAbs is consistent with the idea that the V3 loop is

displayed to varying degrees in the context of the native trimeric

Env protein of individual isolates [67,68] and with the recent

observation that sCD4 broadens neutralization of V3 mAbs [69].

The results obtained with HK20 are particularly intriguing, since

this mAb has a broad pattern of neutralization observed with HOS

but not TZMbl target cells. This mAb recognizes a highly

conserved epitope in the HR-1 trimer and it is more effective as an

Fab fragment as compared to intact IgG, a fact that is may be

explained by the limited accessibility of the epitope, which is likely

to be exposed only transiently on the cell surface during the viral

entry process [70]. Intriguingly, a recent study indicates that in

TZM-bl cells HIV-1 pseudoviruses penetrate the cytoplasm from

within endosomes rather than from the cell surface [71], a finding

that might help explain the lack of activity of HK20 in the TZMbl

assay if binding of this mAb is affected by the endosomal

environment. Further studies on primary cells will be required to

address the relative importance of these two entry pathways and to

establish whether HK20 may be capable of exerting a broad and

potent neutralizing activity in vivo. Preliminary studies using M7

cells [52] challenged with replication-competent HIV-1 viruses

Table 2. Epitope mapping of gp41-specific mAbs.

Cross-competition with: Binding to: Epitope Specificity Neutralization

mAbs 2F5 4E10 3D6 5F3 HK20 HR1 5HB HR2 HOS TZM-bl

HGN158 2 2 2 2 2 2 + 2 5HB 0/3 nd

HGN36 2 2 2 2 2 2 + 2 5HB 0/20 0/46

HGW34 2 2 2 2 + +/2 + 2 5HB 0/3 nd

HGW46 2 2 2 2 2 2 + 2 5HB 0/20 0/46

HGK129 2 2 + 2 2 2 2 + LLGIWGCSGKLIC C-C 0/3 nd

HGN146 2 2 + 2 2 2 2 + LLGIWGCSGKLIC C-C 2/20 nd

HGN35 2 2 + 2 2 2 2 + SGKLIC C-C 0/3 nd

HGW17 2 2 + 2 2 2 2 2 C-C 0/20 nd

HGY25 2 2 + 2 2 2 2 2 C-C 0/20 nd

HGP40 2 2 2 2 2 2 2 2 gp41 only 0/20 0/46

HGP48 2 2 2 2 2 2 2 2 gp41 only 0/3 nd

HGY50 2 2 2 2 2 2 2 2 gp41 only 0/20 0/46

HK20 2 2 2 2 + + + 2 QQHLLQLTVWGIKQL HR-1 17/20 3/92

HGB33 2 2 2 2 + 2 + 2 HR1/5HB 2/20 0/46

HGW63 2 2 2 + + + + 2 HR1/5HB 0/20 nd

HGD161 2 2 2 + + + + 2 HR-1/FP 0/20 0/46

HGP16 2 2 2 + + + + +/2 HR-1/FP 1/20 1/46

HGW23 2 2 2 +/2 +/2 + + 2 HR-1/FP 3/20 nd

HGN91 2 2 2 +/2 +/2 + + 2 HR-1/FP 0/3 nd

HGH8 2 2 2 +/2 +/2 2 + 2 HR-1/FP 0/20 0/46

HGF24 2 2 2 2 +/2 2 + + TNLIYTLIEESQN HR-2 2/20 4/46

3D6 2 2 + 2 2 2 2 +/2 GCSGKLICTTAVPW C-C nd nd

5F3 2 2 2 + 2 + + 2 STMGAASITLTAQARQ FP nd nd

2F5 +/2 +/2 2 2 2 2 2 +/2 DKW MPER 10/20 35/90

4E10 + + 2 2 2 2 2 +/2 WFDI MPER 20/20 89/90

Cross competition with biotinylated mAbs of known specificity: +, 90–100% inhibition, +/2, 50–90% inhibition, 2, ,50% inhibition. Binding to different gp41 constructs
by ELISA. Minimal linear epitopes using the Pepscan analysis and specificity assignment. C-C, C-C loop; 5HB, 5-helix bundle; FP, fusion peptideShown is also the number
of isolates neutralized in the HOS-based and TZM-bl based assays.
doi:10.1371/journal.pone.0008805.t002
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carrying a Luc reporter showed that HK20 exhibits reasonably

broad neutralization consistent with the results from the HOS cell

assay, and similar to Fab HK20 in the TZM-bl cell assay. Whereas

the TZM-bl assay is sensitive for certain antibodies such as CD4bs

mAbs, some mAbs such as 2G12 to other epitopes are less sensitive

to neutralization in this assay [72], perhaps owing to the

unnaturally high level of CCR5 expression on the TZM-bl cells

[60]. In this respect, low coreceptor expression levels have been

associated with delayed fusion kinetics and hence enhanced virus

sensitivity to HR-1 binding inhibitors, such as T-20 [73].

Therefore, despite the advantages of high throughput with the

TZM-bl assay, alternative neutralization assays might have closer

relevance to the in vivo situation.

In conclusion, we have shown that in HIV-1-infected

individuals a high proportion of HIV-specific B cells produce

neutralizing antibodies but only a few possess neutralizing activity

with relatively broad neutralization coverage. In the short term,

some of these reagents will be tested for their ability, singly or in

combination, to prevent HIV-1 or SIV transmission in a macaque

challenge model as done previously with other mAbs [5,6,7,8,9].

In the longer term, and combined with an atomic-level analysis of

epitope specificity, some of these mAbs may facilitate the template-

based design of immunogens for the development of a vaccine able

to induce neutralizing antibodies against the wide range of HIV-1

strains present in the global pandemic.
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