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Introduction
Buruli ulcer, caused by Mycobacterium ulcerans, is an 
emerging disease that at present is the third most 
common human mycobacteriosis worldwide after 
tuberculosis and leprosy.1 Buruli ulcer is found mostly 
in humid tropical areas of Asia, Latin America, and 
Africa where its incidence has been increasing, 
surpassing tuberculosis and leprosy in some regions.1 
Buruli ulcer is a necrotising disease of the skin (mainly 
the subcutaneous tissue), that mostly aff ects children, 
producing massive, disfi guring ulcers and permanent 
disabling scars.2,3 There is no vaccine against this 
disease, and treatment is diffi  cult and generally requires 
surgery, usually accompanied by skin grafting and 
prolonged courses of antibiotics. Despite its huge social 
eff ect Buruli ulcer remains a largely neglected 
disease.3,4

Buruli ulcer is also of great scientifi c interest because 
of the unique characteristics of its pathogenicity that 
have been the source of contradictory and controversial 
interpretations, and remain largely enigmatic.

An extreme among mycobacteria
M ulcerans is genetically very close to the typical 
intracellular parasites Mycobacterium tuberculosis and 
Mycobacterium marinum,5 and the greater than 98% 
nucleotide sequence identity between M ulcerans and 
M marinum provides evidence that M ulcerans evolved 
from M marinum.5–7 However, over the course of its 
evolution M ulcerans acquired a giant virulence plasmid, 
pMUM001, responsible for the synthesis of the exotoxin 
mycolactone.8 Acquisition of this plasmid has been 
deemed to be the main driver for Buruli ulcer emergence 
in people.9 Additionally, by comparison with M marinum, 
M ulcerans has undergone extensive gene loss,10,11 as is the 
case in the obligate intracellular parasite Mycobacterium 
leprae, although to a lesser degree.12 

M ulcerans grows very slowly in vivo13 and, like most 
M marinum strains, has an optimum growth temperature 
of about 32°C,14 explaining the predilection of M marinum 
for the skin and its restricted systemic dissemination.15–19 
However, bones can be infected by M ulcerans because of 
contiguous spreading or by lymphatic or haematogenous 
dissemination.2,20 Since M ulcerans strains isolated from 
human bone infections do not grow at 37°C,14 osteomyelitis 
is one of the still enigmatic features of Buruli ulcer. 
Progression of the infection leads to coagulative necrosis 
of the dermis and subcutis, resulting in varied non-
ulcerative clinical forms that can progress to ulceration 
following necrosis of the epidermis.21 

Extensive necrosis is a hallmark of the histopathology 
of Buruli ulcer and has been associated with the high 
toxigenicity of M ulcerans. This characteristic of 
M ulcerans,18,19,22 is unique among human pathogenic 
mycobacteria, and is due to the production of a family of 
cytotoxic exotoxins, the mycolactones.23,24 

Therefore, three features of M ulcerans emerge as 
relevant for its pathogenicity: the fi rst is the low optimum 
growth temperature that makes the skin its almost 
exclusive territory, the second is the slow growth rate that 
translates into slowly progressing lesions, and the third 
is the mycolactone-associated high cytotoxicity that adds 
to its mycobacterial nature with consequences for 
pathology and immunity.

The importance of mycolactone for 
pathogenesis
Mycolactones are unusual among bacterial exotoxins 
because they are poorly immunogenic polyketide-derived 
macrolides.23,25 Mycolactone A/B is the most active and 
widespread, and it is characteristic of M ulcerans strains 
from Africa.26 Experiments with externally added 
mycolactone A/B show that it has intense cytotoxic activity 
in vitro, aff ecting monocytes, macrophages, neutrophils, 
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lymphocytes, fi broblasts, and dendritic, epithelial, and 
adipose cells.24,25,27,28 With L929 cells 0·01 ng/mL of 
mycolactone A/B is enough to induce cell death.26

The cytotoxicity of mycolactone has been linked to its 
apoptogenic activity. Apoptosis was seen when several 
cell types were exposed in vitro to purifi ed mycolactone,24 
when cultured primary mouse macrophages were 
infected with mycolactone-producing M ulcerans strains,29 
and in guineapigs24 and mice29,30 infected with toxigenic 
M ulcerans. Moreover, massive apoptosis has been 
reported in Buruli ulcer lesions.31

Tissue necrosis and immunosuppression have been 
associated with mycolactone cytotoxicity.25,32 The 
apoptogenicity of mycolactone has been assumed to be the 
basis of the tissue destruction typical of infections with 
M ulcerans. However, it is not clear how this activity leads 
to extensive tissue necrosis. Indeed, the necrotic alterations 
in M ulcerans lesions exceed the cell destruction attributable 
to mycolactone cytotoxicity and extend to non-cellular 
components of the connective tissue.33,34 The actual 
contribution of cytotoxicity due to M ulcerans to the various 
types of damage seen in Buruli ulcer necrotic epidermal, 

dermal, and subcutaneous lesions is not clear,35 and the 
involvement of other mechanisms, including ischaemia 
associated with vascular pathology, deserve con-
sideration.2,36,37 Ischaemia-inducing vascular pathology, 
namely vasculitis and thrombosis leading to blockage of 
small-sized and medium-sized vessels in the subcutaneous 
tissue and dermis, has been described in human beings 
and animals infected with M ulcerans.18,24,34,36,38 

Although usually less extensive, necrosis also happens 
in skin infections with M marinum, Mycobacterium 
haemophilum, and M tuberculosis,35,39 and also in 
pulmonary M tuberculosis infections.40 The mechanisms 
that form these necroses might contribute to the necrotic 
lesions in M ulcerans infections. 

Immunosuppression in M ulcerans infections has been 
thought to be a consequence of the cytotoxicity of 
mycolactone towards immune cells, ultimately aff ecting 
pathogenicity. However, it is not clear what mycolactone 
cytotoxicity contributes to the immunosuppression 
reported in Buruli ulcer.35,41

Regarding both the immunosuppressive and 
necrotising activities of mycolactone, the local 
concentration of the toxin in tissues infected with 
M ulcerans is not known because it is poorly 
immunogenic, making it diffi  cult to detect with 
immunocytochemistry. In mice subcutaneously 
infected with a mycolactone-producing M ulcerans 
strain, the intact mycolactone molecule was detected by 
mass spectrometry in mononuclear cells in the blood, 
lymph nodes, and spleen.42 The technical approach used 
in that study did not allow the assessment of the 
distribution, concentration, and biological activity of 
mycolactone at the subcutaneous sites infected with 
M ulcerans. Therefore, in the in-vitro experiments 
addressing the eff ects of mycolactone on immune cells 
the toxin was added at arbitrary concentrations, so 
extrapolation to the real disease in vivo should be 
treated with caution. The lack of knowledge about the 
amount of cytotoxic factors released from M ulcerans 
during the early, active, or late stages of infection has 
already been stated.35 

The in-vitro cytolytic activity of mycolactone aff ects 
many types of cells25,27 and some studies show that it 
inhibits phagocytosis.22,43–45 However, understanding how 
such extensive activity is expressed in vivo is diffi  cult. 
Indeed, the toxin is highly diff usible18,42 and yet cutaneous 
Buruli ulcer is associated with minimum systemic 
eff ects,46 abundant phagocytes with intracellular 
M ulcerans are frequently present in areas close to 
accumulations of high numbers of extracellular bacilli 
(fi gures 1, 2, and 3)29,30 that have been described as 
producers of high concentrations of mycolactone,44,47,48 
and mycolactone was not detected in the sera of mice 
with progressive subcutaneous infection by toxigenic 
M ulcerans.42

Except for the presence of pMUM001, it is not clear 
what eff ect the genomic diff erences between M ulcerans 
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Figure 1: Subcutaneous injection of toxigenic ITM 98-912 Mycobacterium ulcerans in mouse foot pads
Sample collected 16 days after the injection of 5·9 log10 bacilli (A) when swelling was already evident but before 
ulceration. An infl ammatory cellular infi ltrate is present near the abundant extracellular bacilli. Reproduced with 
permission from the American Society for Microbiology.29 Sample collected at 28 days after inoculation of 
6 log10 bacilli (B), when the lesion was advanced but not yet ulcerated. This sample shows the transition from the 
peripheral infl ammatory infi ltrate with macrophages packed with acid-fast bacilli (arrows) to the acellular necrotic 
area with abundant extracellular bacilli (asterisk). Reproduced with permission from the American Society for 
Microbiology.30 Intramacrophage bacilli (C) in the cellular infi ltrate of the foot pad sample in part A. Sample 
collected 15 days after injection of 6 log10 bacilli (D). High magnifi cation of the peripheral area of the infl ammatory 
infi ltrate after macrophage specifi c immunohistochemical staining with the F4/80 antibody. A macrophage 
contains Mycobacterium ulcerans bacilli. Reproduced with permission from the American Society for Microbiology.30



www.thelancet.com/infection   Vol 9   November 2009 701

Review

and its ancestor M marinum have on pathogenicity. 
The virulence of M ulcerans, as for any other pathogen, 
must be multifactorial,49 but since mycolactone has 
monopolised research on Buruli ulcer pathogenesis other 
virulence factors have so far had little attention. M ulcerans 
mycolactone-negative mutants are able to multiply within 
macrophages30,44 and induce in mice an intracellular 
infection with infl ammatory responses and granul-
omatous lesions.44 Analysis of the M ulcerans proteome 
has started and is likely to reveal the virulence-related 
expression profi le of this pathogen.50 

Some factors besides mycolactone that are likely to be 
involved in the pathogenicity of M ulcerans deserve urgent 
research. First, all M ulcerans strains tested have 
11 chromosomal protein-coding DNA sequences that 
seem to be specifi c to this bacterium and might contribute 
to pathology associated with Buruli ulcer.6,9 Second, 
M ulcerans has been shown to form an extracellular 
matrix that is involved in virulence. Besides mycolactone, 
this coat contains many proteins and lipids or lipoglycans 
that are likely to play a part in the pathogenicity of 
M ulcerans.51 Besides these extracellular-matrix lipids, like 
in other pathogenic mycobacteria,52 several M ulcerans 
cell-wall lipids are likely to be involved in virulence.53 
Third, bacterial phospholipases are known virulence 
factors,54 and phospholipase C and D activities and DNA 
sequences homologous to the genes encoding 
phospholipase C in M tuberculosis and Pseudomonas 
aeruginosa were detected in M ulcerans.55

In conclusion, mycolactone is a key factor in the 
virulence of M ulcerans,23 but the actual size of its eff ect 
on pathogenesis is not clear. As discussed elsewhere,56,57 
this toxin provides a target for vaccination. However, the 

lipid nature of mycolactone complicates the development 
of immunity against this toxin. An alternative would be 
to target enzymes involved in the biosynthesis of 
mycolactone.

M ulcerans-associated cellular responses
Revisiting the past
The published work on M ulcerans infections has been 
dominated by the interpretation that, by contrast with 
other pathogenic mycobacteria, M ulcerans is an 
extracellular parasite that induces infections associated 
with minimum or absent infl ammation, as has been 
reviewed elsewhere.1,30,58,59 However, the early publications 
about Buruli ulcer and experimental infections with 
virulent M ulcerans strains of Australian and African 
origin15–19 reported the presence of areas of tissue necrosis 
with abundant extracellular bacilli and infl ammatory 
cellular infi ltrates with phagocytes extensively colonised 
with bacilli, two features recognised as typical of 
mycobacterial infections. The fi rst defi nitive description 
of Buruli ulcer15 reported the presence of large numbers 
of bacilli within phagocytes, similar to infections with 
M leprae. In mouse infections, Frank Fenner16 reported 
the presence of macrophages packed with bacilli, and 
William H Feldman and colleagues17 reported a severe 
infl ammatory reaction with infl ammatory exudates and 
clusters of phagocytes containing clumps of bacilli. Two 
other early reports18,19 on experimental M ulcerans 
infections in guineapigs also reported the presence of 
infl ammatory infi ltrates with bacilli within neutrophils 
and macrophages.

Descriptions of M ulcerans infections in human beings 
and animals on the basis of the interpretation that the 
cause of Buruli ulcer was an extracellular parasite were 
frequently accompanied by explicit or implicit recognition 
of features that do not fi t with such an interpretation.29,30 
Namely, that those infections are associated with 
cell-mediated immunity (CMI) and delayed-type hyper-
sensitivity responses (DTH), and that CMI-boosting 
BCG-type vaccines are worth testing as a prophylactic 
measure. 

In support of the interpretation that M ulcerans is an 
extracellular parasite that induces infections with 
minimum or absent infl ammation the following 
arguments have been advanced. Buruli ulcer biopsies 
show predominantly extensive necrotic acellular areas 
with extracellular bacilli,33,34,59,60 mycolactone has immuno-
suppressive activities that inhibit infl ammatory and 
immune responses,44–46,61 in some in-vitro models 
M ulcerans and mycolactone hampered the phagocytosis 
of the pathogen by macrophages,22,43–45 and attempts to 
grow M ulcerans within cultured macrophages were 
unsuccessful.43,44 

However, the following reassessment of these and 
other results shows that an alternative interpretation of 
M ulcerans pathogenicity is justifi ed, one that is more 
in accordance with the mycobacterial nature of this 
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Figure 2: Low dose inoculation of the mycolactone producer M ulcerans ITM 
98-912 strain
Histopathological pattern of the infection in the mouse foot pad 41 days after 
inoculation of 300 bacilli. This lesion was advanced but not yet ulcerated. The 
pattern, similar to that in fi gure 1A, shows abundant extracellular bacilli and a 
cellular infi ltrate with intracellular bacilli (shown at higher magnifi cation in 
part B).
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organism and with several reported aspects of Buruli 
ulcer immunity.

Association with infl ammatory infi ltrates
Biopsies of initial Buruli ulcer lesions are not available. In 
advanced Buruli ulcer it is unquestionable that a diagnostic 
hallmark is the presence of extensive necrotic acellular 
areas with a few infl ammatory cells and frequently 
abundant extracellular M ulcerans, because it represents 
the predominant histopathological pattern. The myco-
bacterial nature of the cause of Buruli ulcer and the 
published early results on M ulcerans infections reviewed 
above, however, show that there are reasons to admit that 
such a histological pattern might only represent part of the 
picture of host–parasite interactions in spatial, temporal, 
and immunological terms.29,30,62 This is more so since the 
proportion of necrotic areas increases with the progress of 
the infection. Moreover, it should be noted that necrotic 
areas with extracellular mycobacteria are also present at 
specifi c places and phases of development in lesions due 
to M tuberculosis,40 M haemophilum, or M marinum.35 

The dynamics of the cellular response of the host from 
the very beginning of the infection can only be assessed 
with animal models. Most animal studies on the phagocyte 

response to invasion by mycobacteria used high inocula63–67 
and revealed an early infl ammatory infi ltrate enriched with 
neutrophils, quickly followed by recruitment of 
infl ammatory monocytes or macrophages that, in time, 
became predominant. This dual infl ux of infl ammatory 
phagocytes has also been found in studies on rodents 
infected with M ulcerans using high inocula.15,19,29,30,68 A time-
lapse assessment of the subcutaneous cellular response to 
infection with virulent M ulcerans strains in mice showed 
that extensive infl ammatory infi ltrates with neutrophils 
and macrophages were present in specifi c areas of the 
lesion in early and advanced active disease (fi gures 1 
and 2).29 Since experimental infections after inoculation of 
low bacterial doses more closely resemble the natural 
infection, it is relevant that a similar histopathological 
scenario, although with a delayed onset, was seen when 
mice were infected with 300 virulent M ulcerans bacilli 
(fi gure 2).29 In this and other studies of human,15 guineapig,19 
and mouse30 infections, M ulcerans bacilli were found not 
only extracellularly in the necrotic areas but also within 
neutrophils and, mostly, macrophages (fi gures 1, 2, and 3) 
during the entire infectious process, as in other 
experimental or natural mycobacterioses. However, one 
report45 described transient intraphagocyte bacilli present 
only in the early phases of the infection and predominantly 
within neutrophils.

Importantly, and confi rming the initial description of 
Buruli ulcer histopathology,15 the presence of infl ammatory 
infi ltrates with intramacrophage M ulcerans in specifi c 
areas of the lesion has been reported in Buruli ulcer 
biopsies of untreated African patients with active disease 
(fi gure 3).30,69 This observation shows that the cellular 
response and presence of intramacrophage M ulcerans are 
not restricted to experimental mouse infections that, by 
contrast with human disease,1 do not heal spontaneously.19 

In agreement with the observation of infl ammatory 
infi ltrates in infections with M ulcerans, high expression 
of interleukin 8 or macrophage infl ammatory protein 2 
and other proinfl ammatory cytokines was found in 
Buruli ulcer lesions of human beings70 and in mice 
infected with M ulcerans.68 This fi nding accords with 
others that cultured mouse macrophages infected with 
M ulcerans secrete macrophage infl ammatory protein 2 
and monocyte chemotactic protein 1,45,71 chemokines that 
are known to recruit neutrophils and monocytes.72,73

Association with CMI and DTH
In response to stimulation, peripheral blood mononuclear 
cells of patients with active Buruli ulcer disease show 
reduced secretion of interferon γ46,74–76 and interleukin 2.42 
These observations have been advanced in support of the 
view that infections with M ulcerans are associated with 
mycolactone-induced systemic immunosuppression42,46,77 
and are related to the in-vitro observed damage to 
immune cells induced by that toxin or by toxigenic 
bacilli.22,44,45,50,61,71,77,78 However, repressed interferon γ and 
interleukin 2 immune responses also happen in 
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Figure 3: Infl ammatory infi ltrates with intramacrophage M ulcerans bacilli in specifi c areas of biopsy 
specimens from non-treated African patients with active Buruli ulcer
Extracellular bacilli  in the necrotic acellular area of the lesion (upper region) and bacilli colocalising with 
phagocytes are present in the infl ammatory infi ltrate (A). Detail of the abundant extracellular bacilli in a necrotic 
acellular area (B) and bacilli within macrophages specifi cally stained with NCL-LN5 antibody (C), in the 
infl ammatory infi ltrate in the sample in panel A. High magnifi cations of the areas in the sample in part A 
containing infl ammatory infi ltrates colocalising with bacilli (D–F), showing intracellular bacilli associated with 
phagocytes with nuclear alterations characteristic of apoptosis (E) and intracellular globus-like clumps of bacilli (F). 
Reproduced with permission from the American Society for Microbiology.30
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advancing tuberculosis79–81 and the reduced production of 
interferon γ recovers upon antibiotic treatment in 
tuberculosis81 and in Buruli ulcer.82 Moreover, it is not 
clear how immune dysfunction measured in the 
peripheral blood relates to immunity at the location of 
infection.80 Therefore, although there is depression of 
cytokine production in infections with M ulcerans, the 
contribution of mycolactone to this eff ect is not known. 

There are several results that show that M ulcerans elicits 
CMI and DTH in animals and in Buruli ulcer despite the 
cytotoxicity of mycolactone towards immune cells.

Buruli ulcer lesions can heal spontaneously.1 The 
development of T-helper-1 type of responses has been 
associated with resistance to M ulcerans and found in 

active infection and healing Buruli ulcer lesions.46,74–76,83,84 
Positive DTH burulin skin tests85 were seen in 28 (71·8%) 
of 39 patients with Buruli ulcer,86 a response similar to 
that reported for tuberculosis skin tests.87 The positivity 
of the burulin test increased from early to advanced 
phases:86,88 positive responses were seen in most of the 
patients with Buruli ulcer with healed (15 [93·8%] of 16) 
and ulcerative disease (11 [64·7%] of 17), but in few (two 
[33·4%] of six) patients with early ulcerative disease. As 
with tuberculosis,89 granuloma formation happens when 
Buruli ulcer disease heals.36,83,90,91

The described histopathology of Buruli ulcer lesions 
healing in response to antibiotic treatment is similar to 
that of other mycobacterioses and involves CMI.48,69
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Figure 4: Infection of cultured mouse bone marrow-derived macrophages
Ultrastructure of intramacrophage M ulcerans 4 days after infection (multiplicity of infection=1) with mycolactone producer M ulcerans strain ITM 98-912 (A, B, 
and D). Under these conditions the bacilli multiply intracellularly.30 Detailed image of the cell envelope of extracellular bacilli (C). The typical layers of mycobacterial 
envelopes are visible—namely, the cytoplasmic membrane (CM) covered by the cell wall with an innermost electron-dense peptidoglycan layer (PGL), an intermediate 
electron transparent layer (ETL), and an outer electron-dense layer (OL). High magnifi cation of the envelope of an intramacrophage bacillus (D) at the zone labelled 
with an arrow in part B, showing the same envelope layers shown in part C plus a tightly apposed phagosomal membrane (PM). Reproduced with permission from 
the American Society for Microbiology.30
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BCG vaccination protects human beings against 
Buruli ulcer osteomyelitis,92,93 and BCG and a DNA 
vaccine encoding antigen 85A from BCG protect against 
experimental infections with M ulcerans.94–96

Infection with HIV is associated with substantial CMI 
defi ciency, allowing opportunistic infections with 
intracellular parasites including M tuberculosis and 
Mycobacterium avium.97 Because of the geographical 
location of most Buruli ulcer disease foci in rural areas 
and children, HIV infections are infrequent in at-risk 
individuals in areas endemic for Buruli ulcer.98 However, 
HIV infection has been associated with increased 
incidence of Buruli ulcer99 and with aggressive disease 
with rapidly spreading osteomyelitis.100

The pattern of cytokine expression reported in Buruli 
ulcer lesions62,70,75,83,101 corresponds with the development 
of CMI and DTH. These data suggest that the unique 
cytotoxicity of M ulcerans can coexist with the 
immunological expression of its mycobacterial 
nature.29,30,62,70 

M ulcerans lifestyle in the host
M ulcerans as an intracellular parasite
That a microorganism is intracellular in a given moment 
only means that it is found inside a cell. Any intracellular 
or extracellular parasites can be seen within cells, mainly 
phagocytes. Labelling a microorganism as an intracellular 
parasite is a diff erent issue that must include a set of 
characteristics regarding its life cycle in the host and the 
type of immune responses elicited.102,103 Intracellular 
parasites produce diseases whose pathogenesis and 
immune responses require a phase of intracellular 
residence and multiplication.102–104

M ulcerans-related M tuberculosis and M marinum are 
labelled as intracellular parasites based on the following 
characteristics: fi rst, they grow in vitro105,106 and in vivo58,107 
within macrophages and have genes to promote their 
entry, survival, and multiplication within this host 
cell.108,109 Second, these mycobacteria elicit CMI, DTH 
responses, and a granulomatous tissue reaction.110,111

M ulcerans and mycolactone were reported to inhibit 
phagocytosis by macrophages in vitro and this inhibition 
has been assumed to interfere with the in-vivo 
phagocytosis of M ulcerans, promoting the extracellular 
location of the bacilli.22,43–45 However, substantial inhibition 
of phagocytosis in vitro was only seen with high 
concentrations of the toxin,44 and the actual concentration 
of the toxin in infectious sites is unknown. Recent results 
show that mycolactone-producing M ulcerans strains are 
phagocytosed in vitro by macrophages (fi gure 4) at similar 
rates as M tuberculosis and M bovis BCG when a low 
multiplicity of infection was used.30 Moreover, the 
presence of intraphagocytic bacilli in active untreated 
human and experimental M ulcerans infections suggest 
that even if some inhibition of phagocytosis is induced, 
substantial in-vivo uptake of the pathogen by macrophages 
does happen. 

M ulcerans was found unable to grow within 
macrophages in vitro.43,44 However, these results were 
from experiments using very high multiplicities of 
infection that induce quick killing of macrophages.22,30,44,45 
When this point was re-examined it was shown that 
virulent M ulcerans grows within cultured macrophages 
provided low multiplicities of infection are used,30 as 
described for M tuberculosis and M marinum.105,112,113

The ability of M ulcerans to grow within macrophages 
in vitro is not direct evidence that this growth happens 
in vivo. This in-vitro characteristic has been considered 
as typical of intracellular parasites like M tuberculosis and 
M marinum, and has been thought to be a correlate of an 
intracellular lifestyle114,115 and of disease promoting 
pathogenicity.116,117 Moreover, in mouse foot pads injected 
with virulent M ulcerans (fi gures 1 and 2)30 and in biopsies 
of Buruli ulcer (fi gure 3),15,30 distended macrophages 
containing huge numbers of bacilli were seen, which 
were reminiscent of intramacrophage globi resulting 
from the intracellular multiplication of Mycobacterium 
lepraemurium and M leprae.118

The interpretation that the cause of Buruli ulcer has the 
essential hallmarks of intracellular parasites like the other 
pathogenic mycobacteria30 is supported by the observations 
that M ulcerans is phagocytosed in vitro by macrophages 
and has the ability to grow within these phagocytes, is 
seen in large numbers within macrophages in active 
untreated infections, and elicits CMI and DTH responses. 
In favour of this interpretation is the observation 
(Torrado E, Trudeau Institute, Saranac Lake, NY, USA, 
personal communication) that several genes (including 
MUL_0769, MUL_4008, MUL_0823, MUL_0463, and 
MUL_2626) needed for growth of M tuberculosis and 
M avium within macrophages108 are in the genome of 
M ulcerans strain Agy99,6 although studies to clarify the 
function of these genes have not been done. 

Cytotoxicity versus intracellular parasitism
Intracellular multiplication in the M ulcerans life cycle 
explains the reported features of immunity associated 
with infections and accords with the mycobacterial nature 
of M ulcerans, but faces a potential confl ict of how to 
reconcile intracellular parasitism with cytotoxicity.

Since intracellular parasites are dependent on living 
host cells and many of their functions,119 the classic view 
was that they must have low or no cytotoxicity.102 
However, several intracellular parasites including 
M tuberculosis, M haemophilum, and M marinum are 
cytotoxic to macrophages.112,113,120,121 The direct cytotoxic 
activity of those mycobacteria towards host cells has 
been linked to specifi c molecules unrelated to 
mycolactone.112,113,120,122 Direct cytolytic activity by intra-
macrophage pathogens after intracellular multiplication 
has also been reported for other intracellular 
parasites,123–125 and association of that activity to tissue 
invasiveness and virulence has been established for 
M tuberculosis and M marinum.112,113,126 Therefore, 
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M ulcerans is not alone in the group of intracellular 
parasites and in the Mycobacterium genus as a cytotoxic 
microorganism, although the intense activity of its 
main cytotoxic molecule, mycolactone, makes it more 
diffi  cult to reconcile cytotoxicity with intracellular 
parasitism. However, the negative consequences of 
cytotoxicity on intracellular growth of M ulcerans could 
be controlled by regulating the expression of 
mycolactone genes. Mechanisms for the temporal 
regulation of the cytolytic activity of intracellular 
parasites have been reported,127,128 including quorum-
sensing systems in M tuberculosis and M marinum.129 

M ulcerans within neutrophils
Phagocytosis of M ulcerans by neutrophils in vivo was 
reported in early15,19 and recent29,30,45 publications. In more 
detailed studies, bacilli within neutrophils were seen in 
the initial phases of the infection and transiently45 or 
throughout the infectious process.29,30 Although the 
pathogen was inoculated in high numbers in these 
studies, this does not reproduce the early phase of the 
natural infection where the invading mycobacteria are 
most likely phagocytosed by the resident tissue 
macrophages—highly phagocytic cells located in all body 

territories130 that are the fi rst phagocytes the invading 
pathogens encounter.131 This phagocytosis is the case, for 
example, at the beginning of pulmonary tuberculosis.40 
Phagocytosis by neutrophils is most typical in infections 
by extracellular parasites132 that are eliminated after a 
brief period within the neutrophils.133 Therefore, the 
presence of M ulcerans within neutrophils in vivo is 
irrelevant for the characterisation of M ulcerans as an 
intracellular parasite. 

M ulcerans bacilli might be transferred within 
neutrophils to the draining lymph nodes.45 However, the 
coexistence in M ulcerans within lymph nodes and of the 
bacilli within neutrophils is not evidence that bacilli have 
been transferred between the two. Mycobacteria might 
have been internalised in the lymph nodes by local 
phagocytes after having been transferred as free bacilli.66

Extracellular multiplication in vivo
Extracellular multiplication in vivo happens during 
specifi c phases of the infectious processes of several 
intracellular parasites.134 The presence of extracellular 
bacilli in large clumps in necrotic areas (fi gures 1 and 3) 
suggests that extracellular multiplication of M ulcerans 
would take place in active, advanced disease.15,16 

Macrophage

Lymphocyte Apoptotic 
neutrophil

Apoptotic 
macrophage

Neutrophil

Cell debris

A CB

Figure 5: Schematic representation of the initiation and establishment of a Buruli ulcer lesion
Early stage of infection (A) with M ulcerans (red bacilli) phagocytosed by neutrophils and macrophages in the acute infl ammatory infi ltrate. A more advanced 
stage (B) characterised by the presence of an area with infl ammatory cellular infi ltrate with intraneutrophil and intramacrophage bacilli, and apoptotic neutrophils 
and macrophages. The advanced stage of the lesion with extensive necrotic, acellular areas (C) containing abundant clumps of extracellular bacilli, cellular debris, and 
neutrophils and macrophages with intracellular bacilli at the edge of the necrotic areas. 
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Accumulation of extracellular bacilli in necrotic areas 
has been reported in lesions due to M tuberculosis,40,135 
M haemophilum,35 and M marinum.35,113 Moreover, 
extracellular multiplication of M tuberculosis happens 
in tuberculosis.40,135 However, the contribution of 
extracellular multiplication to the pathogenesis of 
infection with M ulcerans in necrotic areas, including 
through the secretion of mycolactone, has not been 
evaluated. 

How long extracellular M ulcerans remain viable in the 
extensive areas of tissue necrosis is unknown. If in the 
ulcerated lesions viable extracellular M ulcerans are lost 
to the exterior, as with M tuberculosis in necrotic lung 
lesions,40 they could contribute to the survival of the 
species in endemic areas.11

Extracellular M ulcerans might also be of relevance in 
the context of the antibody-mediated immunity in 
infections by some intracellular parasites,136 including 
M tuberculosis.137 Several reports describe the production 
of antibodies to M ulcerans in mice and patients with 
Buruli ulcer,46,74,86,95,138,139 but a possible protective activity 
of these antibodies has not been assessed. However, the 
characteristic presence of abundant extracellular 
M ulcerans bacilli in advanced Buruli ulcer lesions has 
to be taken into consideration when developing new 
chemotherapeutic and prophylactic strategies.57

A model of the progression of infection
A model of the progression of M ulcerans infectious disease 
has been suggested (fi gure 5)29,30 on the basis of the reviewed 
data, integrating aspects of Buruli ulcer microbiology and 
immunology. This model implies that M ulcerans behaves 
as an intracellular parasite that induces infl ammatory 
cellular responses. During the active phase of the infection, 
M ulcerans parasitises macrophages and multiplies within 
them, continuously colonising incoming monocytes or 
macrophages and progressively invading healthy tissues. 
The persistent infl ux of leucocytes to the site of active 
infection provides immune cells that interact with 
M ulcerans, triggering leucocyte chemotaxis and CMI; the 
ability of this CMI to halt the progress of the infection, 
mediate immunopathology, or lead to self cure depends 
upon multiple factors including dose of infection, virulence 
of bacteria, and the immunocompetence of the host. The 

band of cellular infi ltrate with M ulcerans multiplying 
within macrophages therefore represents the front where 
crucial events in the development of the disease occur. As 
the front advances with invasion of healthy tissues, 
leucocyte lysis at the trailing edge of the infi ltrate creates a 
continuously enlarging acellular necrotic area with freed 
bacilli that probably multiply extracellularly. In advanced 
disease, the necrotic lesion further expands with extensive 
coagulation necrosis of the subcutaneous tissue, dermis, 
and epidermis, extensive vasculitis, and, in some cases, 
ulceration. In time, immunity becomes protective with 
production of a granulomatous tissue reaction and 
healing.

According to this view of Buruli ulcer pathogenesis, 
infl ammatory infi ltrates in advanced lesions occupy a 
smaller area compared with that of the necrotic zones 
because of the destruction of the continuously attracted 
infi ltrates of immune cells by mycolactone rather than, 
as proposed by others,22,23,44,77 because of the mycolactone-
induced inhibition of cellular responses. That is, in 
advanced lesions of Buruli ulcer, the infl ammatory 
cellular infi ltrates are minor in spatial but not in 
immunological terms. 

Conclusions
We propose that M ulcerans is an intracellular parasite 
that induces immunologically relevant infl ammatory 
cellular responses. This interpretation clarifi es some 
controversial points within the published work on 
Buruli ulcer and explains reported association with 
CMI and DTH, including development of T-helper-1 
responses, some degree of protection by BCG-type 
vaccines, and higher incidence of the disease in CMI-
defi cient individuals. Rather than representing the 
mere attribution of a label with academic interest, this 
interpretation has relevant prophylactic and therapeutic 
implications because it prompts the development of 
vaccines that boost CMI and the use of chemotherapeutic 
protocols that include antibiotics active against 
intracellular mycobacteria.

Several features of M ulcerans biology represent an 
exaggeration of characteristics of the closely related 
species M tuberculosis and M marinum. Illustrated by 
the stronger ability of M ulcerans to induce cytolysis, 
produce necrotising lesions, and to depress immune 
responses. Mycolactone seems centrally responsible 
for the unique characteristics of the cause of Buruli 
ulcer, but the importance of the eff ects of this toxin on 
pathogenesis and whether it is the sole component in 
the induction of those exaggerated features awaits 
clarifi cation. The clarifi cation of the role of mycolactone 
will need to include the search for additional virulence 
factors, a much neglected area of study. Fresh research 
on M ulcerans infections in patients with Buruli ulcer 
and in animals is needed to better understand the 
relevance of data from experiments where mycolactone 
is added to cultured cells or is injected into animals, 

Search strategy and selection criteria

Data for this Review were identifi ed by searching PubMed 
and the references in review papers for relevant articles in 
English and French from 1948 until May, 2009. All but one of 
the referenced papers are in English. Search terms included 
“Mycobacterium ulcerans”, “Buruli ulcer”, “intracellular 
parasites”, “cell mediated immunity”, “apoptosis”, and 
“cytotoxicity”. Preference was given to articles dealing with 
M ulcerans pathogenesis, mycolactone cytotoxicity, and 
bacterial growth within macrophages.
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the concentration, distribution, and stability of the 
exotoxin in infected sites, the regulation of mycolactone 
synthesis and secretion by intracellular and extracellular 
bacilli, and ability of extracellular bacilli to multiply. 
Research on these areas is essential for much needed 
advancement in the control of Buruli ulcer, an 
important and challenging disease that still remains 
largely neglected. 
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