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SUMMARY

In the assessment of the accuracy of diagnostic tests for infectious diseases, the true disease status of the
subjects is often unknown due to the lack of a gold standard test. Latent class models with two latent
classes, representing diseased and non-diseased subjects, are often used to analyze this type of data. In its
basic format, latent class analysis requires the observed outcomes to be statistically independent conditional
on the disease status. In most diagnostic settings, this assumption is highly questionable. During the last
decade, several methods have been proposed to estimate latent class models with conditional dependence
between the test results. A class of flexible fixed and random effects models were described by Dendukuri
and Joseph in a Bayesian framework. We illustrate these models using the analysis of a diagnostic study
of three field tests and an imperfect reference test for the diagnosis of visceral leishmaniasis. We show
that, as observed earlier by Albert and Dodd, different dependence models may result in similar fits to
the data while resulting in different inferences. Given this problem, selection of appropriate latent class
models should be based on substantive subject matter knowledge. If several clinically plausible models
are supported by the data, a sensitivity analysis should be performed by describing the results obtained
from different models and using different priors. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Visceral leishmaniasis (VL), also known as Kala-Azar, is a deadly protozoal disease transmitted
by sandflies. It occurs mainly in rural areas of Eastern Africa, Southern Asia, and Latin America
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and causes an estimated 500000 new cases a year. Many patients do not receive proper medical
attention, as VL diagnosis and treatment is often only available in tertiary health centers. To reach
more patients at the primary-care level, safe and effective drugs and simple and robust diagnostic
tests are needed.

The current reference standard for VL diagnosis is demonstration of Leishmania parasites in
tissue smears or in culture from these tissues. These parasitological techniques show a specificity
close to 100 per cent, but their sensitivity is considerably lower and varies depending on the type
of tissue aspirate [1]. A prospective, multinational study was designed to evaluate the value of
three diagnostic tests that were considered candidates for use in peripheral health services—the
freeze-dried version of the direct agglutination test (DAT), the rk39 dipstick test and a urine latex
antigen test (KAtex)—in the two most affected regions: East-Africa and the Indian subcontinent.
The aim of this study was to estimate the diagnostic accuracy, specifically the test sensitivity
and specificity, of these three field tests in order to identify the most appropriate test, if any, for
implementation in the countries’ treatment programs. In addition, there was interest to determine
whether the diagnostic accuracy was consistent across countries or whether there were important
differences in sensitivity or specificity of the tests between geographic regions. A meta-analysis of
the DAT and rk39 tests [2] indicated that sensitivity of these two tests might be higher and more
homogeneous in the studies carried out in South-Asia.

As no perfect reference standard was available in the study, we used Bayesian latent class models
(LCMs) to estimate test sensitivities and specificities. We expected test results to be correlated
and that the data would violate the conditional independence assumption of standard latent class
analysis. On the basis of subject matter knowledge, we defined a restricted list of plausible
dependencies between test results and incorporated these test correlations in a Bayesian LCM.
We fitted various clinically plausible models for dependencies between the test results using fixed
and random effects formulations. Equivalent fixed and random effects models resulted in similar
inferences on the parameters of interest. However, some parameter estimates differed considerably
between models describing different dependence structures.

In this article, we describe these analyses as a case study in the use of LCMs for the analysis
of a diagnostic study with correlated test results. Further, we provide another illustration of the
observation of Albert and Dodd [3] that model diagnostics may not allow to distinguish between
competing dependence structures that result in different conclusions. This article is organized as
follows. Section 2 provides further information on the study design and data structure. In Section 3
we give an overview of different LCMs proposed to model conditional dependence and describe the
Bayesian fixed and random effects models proposed by Dendukuri and Joseph [4] in more detail.
Section 4 describes issues of model selection and identifiability related to LCMs. In Section 5, we
present an analysis of the Sudanese data from the VL study and illustrate the issues related to model
selection and identifiability. A discussion follows in Section 6, in which we review implications
of our findings on the analysis of diagnostic studies without a perfect reference test and present
recommendations for the use of LCMs in this setting.

2. STUDY DESIGN

The multinational VL study was performed in six study sites distributed over five countries
(Ethiopia, Kenya, Sudan, India, and Nepal). At each site prospective recruitment was done of all
persons that presented with symptoms of VL [5]. Three field tests were performed on all recruited
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subjects: the DAT and the rK39 dipstick test, which are antibody-detection tests performed on
a serum sample, and KAtex, an antigen-detection test performed on a urine sample. In addi-
tion, microscopic examination of tissue aspirates (parasitology) was performed as a reference test.
However, it is well known that parasitology is not a true gold standard. The specificity of para-
sitology is close to 100 per cent, but sensitivity is expected to vary according to the aspiration site.
Sensitivity of spleen aspirates approaches 95 per cent, but bone marrow or lymph node aspirates
have much lower sensitivity, namely 60-80 per cent and 50-60 per cent, respectively [1]. Splenic
aspiration carries certain risks and requires a high level of clinical and laboratory expertise. It was
only performed if the safety of the procedure could be guaranteed (trained personnel, hemoglobin
and platelet count within acceptable limits, blood for transfusion, and surgical facility available);
otherwise bone marrow or lymph node aspirates were obtained. On the basis of clinical grounds,
it was considered unlikely that the tests would be fully independent conditional on disease status.
A priori, a number of plausible correlations between the tests were identified (Section 4). This
diagnostic study illustrates a setting where a perfect reference test is unavailable and available
tests are imperfect and correlated.

3. FIXED AND RANDOM EFFECTS LCMs

LCMs are often used to analyze diagnostic studies when a perfect reference test is lacking. In
these models, the true disease status of a person is an unobserved, or latent, variable with two
mutually exclusive categories, ‘diseased’ and ‘non-diseased’. This unobserved variable determines
the probability to test positive or negative to a number of diagnostic tests. In its basic format, LCMs
require the observed outcomes to be independent within the categories of the latent class. Recently,
extensions of these LCMs are described, which allow for conditional dependence between test
results [4, 6, 7]. In the following sections, we describe the basic conditional independence model
and the fixed and random effects model extensions that allow for conditional dependence between
test results.

3.1. Conditional independence model

Let y;; be the observed binary outcome (0=negative, 1 =positive) for the Jjth test Tj on the
ith subject with true disease status d; (O=not diseased, 1 =diseased), where i=1,..., N, j=
1,2,...,J, and y;; is a realization of the binary random variable Y; ;. The outcome pattern over
all tests for an individual subject i is then a vector y; of length J with y; = (yi1, yi2, ..., Vi _])T.

Results for an individual test are Bernoulli distributed with P(Y; j =1|D; =d;), the probability
of testing positive on the jth test given an individual’s true disease status d;. The conditional
independence assumption can be expressed as

J
P(Yn=y.Y=y,....Yiy=y;|1Di=d;)=[] P(Yij=y;|Di=d;) ¢))
j=1

This can be expressed in terms of the test sensitivities and specificities as

J ‘
P(Yn=y1.Yp=y2,....Yiy=ysIDi=1) = [] S} (1-s!=3» (2)
Jj=1
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with §;=P(Y;j=1|D;=1)=P(Y;= 1{D;=1) being the sensitivity of test Tj and C;=1—
P(Y;j=1|D;=0)=1—P(Y; =1|D; =0) being the specificity of test Tj.

The marginal distribution of the outcomes can then be modeled using a multinomial distribution
with class probabilities:

P(Yi=y,Ya=y,....Y;=y))

1
=3 P(D=k)P(Yy=y1,Y2=y2,.... Yy=ys;1D=k)
k=0

1 7
= Z P(D=k) ]_[ P(szyj|D=k)
k=0 j=1 :

(I-¥))

J - J
=n [] §7 (=S +1-m [1 C; 7 (1-C)" @)
j=l j=!

with 7 being the disease prevalence. Estimation of the unknown parameters can proceed by
maximum likelihood [8] or Markov chain Monte Carlo (MCMC) approaches [9].

In most diagnostic settings, the assumption of conditional independence is, however, highly
questionable. Dependence between diagnostic tests can be induced by subject- and observer-
related effects. Subject-specific factors that may induce dependencies between diagnostic tests
for infectious diseases include disease severity, immunological response, and pathogen burden in
subjects with the disease of interest and the presence of cross-reacting diseases in subjects without
the target disease. Observer differences and variations in sample handling and storage may also
induce correlations between test results. When assessing diagnostic tests for infectious diseases,
the dependencies between the test results are likely to differ between diseased and non-diseased
subjects.

If LCMs are used in the analysis of a diagnostic study, the model should allow for dependencies
between test results. The specification of the dependencies should be flexible enough to allow
correlations between several tests and incorporate different dependence structures across the latent
classes. A number of authors have described methods to generalize LCMs over the last 10 years
[4, 6, 7], allowing for conditional dependence between the diagnostic tests. In a Bayesian context,
Dendukuri and Joseph described two classes of LCMs [4] that allow for a flexible specification of
the dependence structure. The main distinction between the two model classes they proposed is
whether the test sensitivities and specificities remain constant (fixed effects model) from subject
to subject or not (random effects model).

3.2. Fixed effects LCMs

In equation (4), conditional dependence can be modeled by introducing covariances between pairs
of tests. For example, if we assume that tests T1 and T2 are correlated in diseased subjects only,
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the probability of an outcome pattern y is

PYi=y,Y2=y,....Y;=y))
1

=2 PD=K)P(Y1=y,Y2=y,...,Y;=y;|D=k)
k=0

J J
=P(D=DPY1=y,Y2=y|D=1) [| P(Y;=y;ID=1)+P(D=0) [| P(Y;=y;|D=0)
j=3 j=1

. J
=7r(Sly' S'Z‘z(l _Sl)(l“yl)(l _Sz)(l—yz)+(_1)(Y1—y2)COV]2'D=I) n3 S}‘.’(l _Sj)(l—)‘j)
j:

J
1-y; .
+(1-m [T ¢} -y 5)
i=l1 _

where cov;;p—q, denotes the pairwise covariance between test results J and j’ for subjects
with disease status d;. The corresponding correlation is given by p;ip—g. where p jj'D=1=
COVjJ'/ID:l/\/Sij'(l —Sj)(l —Sj/) and pjj’|D=0=COij’|D=0/\/(l —Cj)(] —Cj')Cjle. Addi-
tional pairwise covariances can be entered similarly.

Clearly, models with four or more diagnostic tests result in a complicated notation, especially
when including higher-order correlations. A model for four dependent tests containing all two-,

three- and four-way correlations, parametrized in terms of conditional probabilities, was described
by Berkvens et al. [10].

3.3. Random effects LCMs

In the random effects model, the probability of testing positive for test T J depends not only on
the unobserved disease status but also on continuous latent random variables through a regression
model [4, 6, 11]. In this model, outcomes for a single test for an individual subject i are Bernoulli
distributed with

P(Y;=1|Di=d;,Zi=2;)=n""(aj4, + B4 2:) (6)

where # is a link function. For the link function # both probit [6, 12] and logit [7] links have
been proposed. For the probit link, 77! (y) =®(y), where ® represents the cumulative distribution
function of the Normal(0, 1) distribution and for the logit link, = (y)=1 /(1+e7Y). The regres-
sion equation consists of an intercept term o jd;» @ vector of realized values of random effects
z;, and a coefficient vector p id; The vector of random effects consists of X random variables
with Zp; ~N(0, 1), with z; =(zy;, 22, ..., zxi)T. The coefficient vector Bjd’, =(ﬂjldi,...,ﬁjKdi)T
describes the dependency of test Tj on the K random effects. The dependence structure of the
model is defined by the random effects and coefficient vectors p ja;- Tests that share a common
random value within each patient will show dependence, conditional on the patient’s disease status,
without the need to explicitly specify a covariance parameter [4, 6, 11].

For example, if we assume that tests T1 and T2 are correlated in diseased subjects only, there
would be a single random effect zy; and the coefficient vectors would be scalars with Prig=:--=
Br10=0, Bi11=Pa11=7121p=1. and B3y, =---=f,;; =0, where the size of V12)p=1 indicates the
strength of the dependency of T1 and T2 on the random effect in diseased subjects and consequently
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is proportional to the strength of the association between T1 and T2. The subscript of yj5p=; is
chosen to describe the correlation induced by the random effect and does not correspond to the
subscripts of the f vectors.

The random effects can be thought of as unobserved characteristics of the subjects that influence
the probability of testing positive for one or more of the diagnostic tests. The model can be
generalized through the introduction of observed covariates influencing the diagnostic test results
and the use of other probability distributions than the normal for the random effects. Given (a) the
disease status of the subject, (b) random effects, and (c) an observed covariate vector, the results
of the different tests are then assumed to be independent as in equation (1). The resulting full
likelihood of the model over all subjects and estimation methods are described by Dendukuri and
Joseph [4] for a Bayesian setting and Qu ef al. [6] in a frequentist approach.

By allowing the probability of a test result to depend on observed and/or unobserved subject
characteristics, we explicitly abandon the equality of the population sensitivity with the probability
of testing positive for an individual diseased subject i. To obtain the population-averaged sensitivity
and specificity, we need to average over the random effects distributions.

3.4. Comparison of fixed and random effects LCMs and alternative approaches

Similar dependence structures can be parametrized using the two modeling approaches. Pairwise
dependencies between two tests can either be modeled by a covariance term in the fixed effects
formulation or by a common Gaussian random effect in the random effects formulation. In our
setting of multiple diagnostic tests, the most plausible cause of the correlations between test
results is through observed or unobserved subject characteristics, for example, immunoresponse or
pathogen load. In this case, the fixed effects model is understood as a marginal manifestation of a
random effects model. Exceptions would generally be linked to deficiencies in the study conduct,
e.g. correlations induced by lack of blinding of test results or improper storage of clinical samples.
These fixed and random effects models can cover a wide range of possible dependencies between
test results.

Other models have been proposed that need further generalization of this framework. Albert
et al. [13], for example, replace the Gaussian distribution of the random effects by a finite mixture
distribution in which some individuals are unequivocally and correctly classified by all tests,
whereas others are subject to diagnostic error. This model was proposed for situations where most
severely diseased and healthiest patients are the easiest to classify. The model assumes that there
are subjects for whom no diagnostic error is made. In our setting of diagnostic laboratory tests for
infectious diseases, this situation is unlikely to happen.

An alternative approach to modeling the dependence between diagnostic tests is the use of
LCMs with more than 2 latent classes [14—16], for example, adding a class with subjects with
ambiguous disease status. Within each of these classes, conditional independence is then assumed.
In our study, we focussed on the 2-class model as it easily provides estimates of test sensitivity
and specificity, which is more difficult for the 3-class model [17].

4, MODEL IDENTIFIABILITY AND SELECTION

In general, LCMs are only identifiable if the number of parameters estimated is less than or
equal to the number of independent multinomial cell frequencies, which is 27 —1 for J tests.
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The number of parameters to be estimated in an LCM with an unconstrained conditional dependence
structure is, however, 2/+! —1. Consequently, the parameter space needs to be reduced to allow
the model to be estimated by placing constraints on either the prevalence, test accuracy parameters,
or dependency structure. Conditional independence is such a reduction of the parameter space and
allows estimation of a model with at least three tests by setting all two-way and higher associations,
conditional on the disease status, to be zero.

Instead of applying a popular, but not necessarily justifiable, assumption as conditional inde-
pendence, constraints on the parameter space can be based on subject matter knowledge or other
external sources of information. This can take the form of deterministic or probabilistic constraints
[10]. Setting a model parameter to a particular value, including zero, is an example of a determin-
istic constraint. On the other hand, specifying a prior distribution for a parameter is a probabilistic
constraint. In general, probabilistic constraints are preferred as the resulting inference will better
reflect the available knowledge and uncertainty. In a Bayesian approach, prior information, e.g.
from previous similar studies or expert opinion, can be used in the specification of the prior
distributions of the parameters of interest or nuisance parameters, as covariances. Experts can
usually state which pairwise dependencies they find clinically plausible and may even be able to
rank dependencies in the order of probability of occurrence. They are, however, rarely able to
provide meaningful prior probabilities for the correlations among diagnostic tests or random effect
coefficients.

In addition to the lack of model identifiability—due to the estimation of more parameters than
available independent data points—it has been reported that (1) some LCMs may be only weakly
estimable [9, 18] and (2) different LCMs may provide a similar fit to the data while leading
to different study conclusions [3,13]. Weak estimability occurs when, although the technical
conditions for identifiability are met, there is not enough information in the data to estimate all
the parameters in the model without relying heavily on the prior distributions of the parameters.
Examples of weakly estimable models in the context of LCMs are given by Garrett and Zeger [18]
and by Garrett et al. [9]. An example of the second phenomenon is given by Albert and Dodd [3],
who analyzed Handelmans dentistry data using a general random effects model, a restricted model
where a common sensitivity and specificity over raters is assumed, and a finite mixture model
where some patients are diagnosed without error, while others may be subject to diagnostic error.
All three models provided an acceptable fit to the data and model diagnostics (loglikelihoods,
chi-squared values) were very similar across the models. Parameter estimates from the models
differed greatly, however. We will illustrate these two issues with another data set where a number
of models yield substantially different parameter estimates but result in a similar fit to the data.
Combining the dependence structures from two of these models, that each in itself was fully
estimable, results in a weakly estimable model.

Model selection criteria can be used to identify models that do not give an acceptable fit to
the data at hand. In a frequentist setting, Pearson and likelihood ratio statistics are calculated
and compared with a chi-squared distribution [8]. In a Bayesian setting, the deviance information
criterion (DIC), Bayes’ factors, and Bayesian p-values [10, 19] can be used, as well as graphical
assessment of the posterior predictive distributions of the model parameters and marginal counts
over the different possible outcome patterns. The posterior predictive plots can indicate which
models are clearly incompatible with the data and which parameters are not well identified from
a given set of data. The DIC is a generalization of the Akaike information criterion and Bayesian
information criteria and estimates the expected deviance of the replicated data. The model with
the lowest DIC should show the best out-of-sample prediction and would be the preferred model

Copyright © 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:4469-4488
DOI: 10.1002/sim



4476 J. MENTEN, M. BOELAERT AND E. LESAFFRE

[19,20]. The Bayesian p-value is defined as the probability that replicated data from a Bayesian
mode] are more extreme than the observed data. A p-value close to O indicates lack-of-fit of a
selected model [10, 19].

5. APPLICATION TO THE VL DATA

5.1. Study design and data structure

In the multinational VL study, four tests were performed for each subject: the field tests of interest
DAT (T1), rk39 (T2), and KAtex (T3), and the imperfect reference test parasitology (T4). All
tests were analyzed as binary outcomes (test positive or negative) with standard cut-offs for the
semi-quantitative DAT (T1 positive if titer >1:3200) and KAtex test (T3 positive if result +, ++,
or +++). We could have modeled the actual, rather than dichotomized, results. This would require
either the use of a parametric model for the test outcomes, for example, a proportional odds model,
or the estimation of many more probabilities if a fully nonparametric approach was used. As our
interest lies in the estimation of diagnostic accuracy of the tests as used and interpreted in field
conditions, we chose to work with the dichotomized results using standard cut-offs. This results
in a test outcome pattern of the form y = (y1, y2, y3, y4)T, where y ;=1 if the test result is positive
and y; =0 if negative (Table I).

On the basis of clinical information, the following correlations between test results were
expected:

1. As both the DAT (T1) and the rk39 (T2) tests are based on antibody detection, the results are
likely to be positively correlated in VL subjects. Individuals with a strong immunoresponse
are more likely to test positive, whereas immunosuppressed subjects, e.g. the very young or
HIV or TB co-infected, are more likely to show false-negative results.

2. The antigen-detection test KAtex (T3) is more likely to test positive in individuals with a
high leishmanial parasite load. Similarly, microscopical detection of parasites (T4) is more
likely to be successful in subjects with many circulating parasites. Consequently, we expected
a positive correlation between KAtex and parasitology results in VL subjects.

3. It has been shown that cases of leishmanial and HIV co-infection show a low immunoresponse
combined with a high parasite load [21]. This would lead to a negative correlation in test
results between the antibody-detection tests (T1 and T2) on one hand and KAtex (T3) and
parasitology (T4) on the other hand in subjects with HIV-leishmanial co-infection.

4. The antibody-detection tests (T1 and T2) can stay positive for months after cure and can
also be positive in healthy persons with asymptomatic leishmanial infection. This would lead
to a positive correlation between DAT and rk39 in non-VL subjects. However, only patients
with the full-blown clinical syndrome of febrile splenomegaly were recruited into the study.
The number of asymptomatic leishmania infections presenting with another febrile illness
was likely to be low, but not necessarily zero. Consequently, this correlation is less likely to
be important.

In the models described in this article, we considered further correlations unlikely to be of impor-
tance, although they can be hypothesized. For example, lack of proper blinding could lead to
general positive correlations between test results, both in VL and non-VL subjects, as the interpre-
tation of one test may be influenced by the knowledge of the results of another. However, the study
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Table 1. Observed and posterior median predicted frequency of test outcome patterns (N =291) and
posterior mean predicted probability (per cent) of being diseased given the outcome pattern for the different
fixed effects model formulations.

Predicted probability (per cent) of being

Test Predicted frequency diseased under model
Observed

Tt T2 T3 T4 frequency Model 0 Model 5 0 1 2 3 4 5
1 1 1 1 51 45 48 100 100 100 100 100 100
1 1 1 0 1 7 3 99 99 100 90 93 100
1 1 0 1 4 8 5 100 100 100 96 98 98
1 1 0 0 16 : 3 14 44 41 98 3 47 100
1 0 1 1 15 12 14 100 100 100 100 100 100
1 0 1 0 1 2 1 86 86 93 89 90 94
1 0 0 1 2 2 1 93 93 97 95 97 97
1 0 0 0 5 12 7 5 5 61 3 41 63
0 1 1 1 7 7 8 100 100 100 100 100 100
0 1 1 0 4 1 1 72 72 68 66 64 69
0 1 0 1 1 1 1 83 82 83 81 81 83
0 1 0 0 15 23 16 1 1 15 0 8 17
0 0 1 1 1 2 1 99 97 98 99 98 96
0 0 1 0 1 2 2 20 15 11 12 11 8
0 0 0 1 1 2 2 28 21 19 20 19 14
0 0 0 0 166 155 161 0 0 0 0 0 0

protocol required test readers to be blinded to the results of other tests; hence, this dependence is
unlikely to occur in the study. )

5.2. Model descriptions

In addition to a conditional independence model (model 0), we fitted various models incorporating
several conditional dependencies between test results (Table II and Appendix A). Models 1-3
incorporate a single pairwise correlation, corresponding to the effects of immunoresponse to VL
infection (model 1), parasite load (model 2), and asymptomatic leishmanial infection coinciding
with another febrile disease (model 3). Models 4 and 5§ incorporate two pairwise correlations.
Model 4 includes the effects of immunoresponse to VL infection and to asymptomatic leishmanial
infection, whereas model 5 includes the effects of immunoresponse to VL infection and parasite
load. Model 6 captures the hypothesized negative correlation between immunoresponse to VL
infection on the one hand and parasite load on the other hand in VL subjects. Expert opinion
indicated that, a priori, models 5 and 6 were clinically most plausible.

For all dependence models apart from model 6, equivalent fixed (Appendix A.1) and random
effects (Appendix A.2) formulations were constructed. In model 6, the dependencies across the
four tests were induced by a common random effect with positive coefficients for tests 1 and 2, and
negative coefficients for tests 3 and 4. Incorporating this structure in the fixed effects formulation
would require the specification of a complex model with third- and fourth-order correlation terms.
Given the difficulties in interpreting such a model, only the random effects formulation was
considered.

As the test accuracy may vary between the five countries included in the study, we modeled
the data from each country separately and present in this paper only the data obtained in Sudan
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Table II. Description and model selection criteria for fixed and random effects models in the visceral
leishmaniasis diagnostic study.

Random effects

Fixed effects formulation formulation
Correlations in Correlations in
Model diseased non-diseased Mean Bayesian Mean Bayesian
No. subjects subjects q pD deviance DIC p-value deviance p-value
0 9 95 1096 1192 <0.001 109.8 <0.001
1 T1-T2 10 10.1 109.7 119.8 <0.001 110.6 <0.001
2 T3-T4 10 8.2 69.5 777  0.184 69.2 0.124
3 _ T1-T2 10 85 69.2 7717 0.194 702 0.102
4 T3-T4 T1-T2 11 84 69.1 77.5 0.197 693 0.124
5 T1-T2 and T3-T4 11 838 694 782 0.195 70.0 0.106
6 T1-T2 and T3-T4* 11 70.3 0.102

Note: A low value for the Bayesian p-value indicates lack-of-fit of the proposed model. g, number of parameters
in the model; pD, Bayesian measure of model complexity; DIC, deviance information criterion. Deviance for
the random effects model was calculated over the margins.

*T1 and T2 negatively correlated with T3 and T4. -

(N =291), see Table I. Similar results were obtained in the other countries [5]. We fitted all LCMs
using WinBugs 1.4 (MRC Statistical Unit Cambridge, Cambridge, U.K.) called from R 2.3.1 (R
Foundation for Statistical Computing, Vienna, Austria). The analysis programs are available on
the Internet at http://med.kuleuven.be/biostat/software/software.htm. Vague priors were specified
for all model parameters. We used Beta(1, 1) distributions, equivalent to uniform distributions over
the interval [0, 11, as prior for the prevalence and test sensitivities and specificities in the fixed
effects formulation. Uniform priors over the feasible range, as determined by the test sensitivities
and specificities [4, 22], were specified for test covariances. In the random effects model, we used
normal priors with mean g equal to zero and standard deviation o equal to 1.69 on the logit scale
for the probability of testing positive or negative for a subject with all random effects equal to
zero. This prior matches a uniform prior over the interval [0, 1] in the first two moments on the
probability scale [23] and consequently results in similar priors as used for the fixed effects model.
Using a vague normal prior on the logit scale would result in a prior on the probability scale
that strongly favors sensitivities and specificities close to 0 or 1. Vague normal priors (u=0 and
0=4.5), constrained to be positive, were specified for the random effect coefficients ;.. The ¢
of 4.5 for these normal priors was chosen as the highest standard deviation that did not result in
convergence problems when fitting the models in WinBugs. In the random effects models, some
sensitivities and specificities were constrained to be >50 per cent to avoid label switching. Label
switching occurs when the diseased subjects are modeled as non-diseased and vice versa, resulting
in test sensitivities and specificities of less than 50 per cent. The fixed effects models converged
to a unique solution without providing additional constraints.

We monitored convergence of the MCMC algorithm using trace plots and the potential scale
reduction R [19] calculated in WinBugs. Loosely speaking, the random effects models converged
more slowly in WinBugs than the fixed effects models and each individual simulation was of longer
duration. Fixed effects models appeared to converge within 20 iterations, whereas random effect
models showed good mixing of the chains within 100 iterations. To ensure adequate convergence
all results were obtained using two chains of 10000 iterations, of which we discarded the first
2000 (burn-in).
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Figure 1. Posterior predictive graph: observed (bold line) and predicted (histogram) frequency of response
pattern ‘1100’ for the conditional independence model O (a) and fixed effects model 5 (b). Dotted lines
indicate the 95 per cent prediction interval for the response pattern frequency.

5.3. Results

The conditional independence model (model O) resulted in an unacceptably bad model fit (Table II).
The observed frequency of test pattern ‘1100’ was considerably higher than predicted by the
conditional independence model (Figure 1(a) and Table I). Incorporating dependency between the
immunoresponse tests (T1 and T2) in diseased subjects (model 1) did not improve the model fit,
indicating that false-negative results in these two antibody-detection tests are unrelated. Models
2-6 showed an improved and acceptable fit to the data, as indicated by the posterior predictive
distribution (Figure 1(b) and Table I) and the formal model selection criteria (Table II).

Although fitted margins were virtually indistinguishable between models 2-6, the parameter
estimates differed greatly. This was observed for both the fixed (Table IIT) and random (Table V)
effects formulations of the models. Similarly, the predicted disease probability for some of the
observed outcome patterns showed important differences between the different models. The poste-
rior mean predicted disease probabilities are shown in Table I for the fixed effects formulation;
the results for the random effects formulation were similar.

Prevalence estimates (95 per cent credible interval) varied from 29.7 per cent (24.4-35.2) in
model 3 to 37.0 per cent (31.0-43.1) in model 2, with similarly large differences in sensitivity
and specificity estimates of the different diagnostic tests. Model 4 showed estimates intermediate
between model 2 and 3 but showed much larger standard errors for model parameters than any
of the other models. The prevalence estimate in model 4 was 33.2 per cent with the 95 per cent
credible interval (25.9—41.0) covering the prevalence point estimates of both models 2 and 3.

The high standard errors indicate that model 4 is only weakly estimable, which was confirmed
by graphing the posterior distributions of the model parameters. For example, for the specificity
of the DAT (C;) we observed a bimodal distribution with one mode slightly below 90 per cent
and the other mode close to 100 per cent. This is due to the fact that the dependence in our data
set was induced by the excess of subjects with response pattern ‘1100’ compared with what was
predicted under the conditional independence assumption (Figure 1(a)). This dependence can be
explained by VL subjects showing negative results on both T3 and T4, indicating a correlation
between T3 and T4 in VL subjects (p34)p=1), or by non-VL subjects showing positive results both
on T1 and T2, indicating a correlation between T1 and T2 in non-VL subjects (p}2)p~o)- Models
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Table III. Posterior mean and standard error for prevalence (7), test sensitivities (S;)
and specificities (C;), and covariances (9} p=4,) from the fixed effects models 2-5 in
the visceral leishmaniasis diagnostic study.

Model 2 Model 3 Model 4 Model 5

Parameter Mean SE Mean SE Mean SE Mean SE

i 37.0 3.1 29.7 2.7 33.2 4.0) 37.0 3.1
S 85.6 4.1) 85.4 4.0) 85.6 @.1) 85.7 @.1)
Cy 98.2 (1.4) 89.4 2.2) 93.6 3.7 98.2 (1.4)
S 78.1 4.2) 77.0 4.5) 717.1 4.4 779 “4.2)
Cy 91.7 2.4) 83.8 (2.6) 87.2 B.7D 91.8 2.4)
S3 73.0 4.7 90.5 (G4 81.3 (7.4) 729 4.7
C3 98.2 (1.2) 98.3 (1.2) 98.2 (1.2) 98.3 (1.2)
Sa 75.1 4.8) 93.0 (3.4) 83.9 (7.8) 74.9 (4.8)
Cy 98.9 (0.8) 98.9 0.8) 98.9 (0.8) 98.8 0.9)
p]2|D=1 —0.06 } (009)
P34|D=1 0.68 (0.09) ) 0.48 0.23) 0.68 (0.08)

including only one of these two correlations (models 2 and 3) will correspond to one of the two
observed modes. Model 2, including p34p—;, corresponds to correlated errors in T3 and T4 in
VL subjects. This means that subjects with pattern ‘1100’ are modeled as VL subjects that show,
incorrectly, negative results for T3 and T4 and results in low sensitivity estimates of T3 and T4
and high specificity estimates for T1 and T2. Conversely, model 3, including p;5 p—o, corresponds
to correlated errors in T1 and T2 in non-VL subjects. This means that subjects with pattern 1100
are modeled as non-VL subjects that are false positives for T1 and T2 and results in low specificity
estimates of T1 and T2 and high sensitivity estimates for T3 and T4.

Given the observation of Albert et al. [13] and Albert and Dodd [3] that sensitivity, specificity,
and prevalence estimates may be biased when the conditional dependence structure between tests in
an LCM is misspecified, these results may not be surprising. Models 2 and 3 describe fundamentally
different dependence structures with model 2 assuming conditional dependence only in diseased
subjects, whereas model 3 assumes conditional dependence only in non-diseased subjects. Model 4,
which incorporates conditional dependencies in both diseased and non-diseased, shows results
intermediate between models 2 and 3. It should be noted that for some parameters, the estimates
are stable over the models considered. From Table III we can see that estimates of the sensitivities
of T1 and T2 and of the specificities of T3 and T4 are similar across models. In addition, a number
of models (models 2, 5, and 6) show similar results although, in part, they describe different
dependence structures.

A priori, p3yp—; Was presumed to be more important than pj5p—o. In addition, parameter
estimates from models 2 and 5 were more in line with expert expectations. In Sudan, parasitological
examination relied only on bone marrow and lymph node aspiration for which a sensitivity of 93.0
per cent would be unexpectedly high. On the basis of these considerations, we selected model 5, the
a priori most plausible model, for our study conclusions [5]. This post hoc reliance on prior expert
opinion for model selection (in this case, the expected sensitivity of the parasitological examination)
might suggest that the incorporation of probabilistic priors in a more general dependence model,
for example, model 4, would lead to an identifiable model. However, when in model 4 different
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Figure 2. Posterior distribution for the specificity of T1 for model 4 using three different vague priors.

non-informative priors were used, relatively large changes in the posterior distribution of the
parameter estimates were observed. As an example, Figure 2 shows the posterior distribution of C;
when priors for the test sensitivities or specificities are changed from Beta(l, 1) to Beta(0.5, 0.5).
These small changes in vague priors resulted in dramatic changes in the posterior distribution
of the parameter estimates. Consequently, care should be exercised when providing informative
priors for the parameters of interest in models that are only weakly estimable as these priors may
exert a larger influence than warranted by the strength of their supporting evidence. In addition,
this example illustrates the importance of assessing the full posterior distribution under different
priors rather than only the posterior modes or means. Similar caveats hold for maximum likelihood
estimation, where the full likelihood function should be assessed to identify local maxima and
areas where the likelihood function is relatively flat.

Apart from the a priori clinically plausible test dependencies described above (Section 5.1), we
considered the four tests to be conditionally independent. This could be considered as strong deter-
ministic constraints on a relatively large number of theoretically possible, but clinically unlikely,
pairwise and higher-level covariance terms. Our choice of dependence structures considered was
based on subject matter knowledge and expert opinion. Additional dependencies between test
results can be hypothesized but were assumed to be zero in our analyses. To assess the effect
of this assumption, we studied models with probabilistic rather than deterministic constraints on
these additional covariance terms. In Table IV, we show parameter estimates from two models,
equivalent to models 2 and 3 in Table III, but with normal priors with u=0 and ¢=0.1 for
all remaining pairwise covariance terms. The apparent fit of the models with these probabilistic
constraints, as described by the DIC and Bayesian p-value [10], improved compared with the
models with deterministic constraints. The parameter estimates, however, remained similar, apart
from a slight increase in standard errors.

Fixed (Table IIT) and random (Table V) effects formulations resulted in similar inferences on the
parameters of interest for all models except the weakly identifiable model 4. As indicated above, the
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Table IV. Posterior mean and standard error for prevalence (7), test sensitivities (S;) and specificities
(C;i) together with model fit criteria from the fixed effects models 2 and 3 with probabilistic constraints
(normal priors with g=0 and 0=0.1) on additional covariance terms.

Model 2/ Model 3’

Parameter Mean SE Mean SE
s 36.6 (3.5) 29.6 (3.2)
Sy 86.1 4.9) 86.1 .7
C 97.9 (1.7 89.7 2.5)
Y 78.1 “4.3) 76.0 (4.6)
Cy . 91.3 2.9) 83.5 3.
S3 72.3 5.1 89.6 @.7
C3 97.8 (1.3) 98.1 (1.8)
Sa 75.0 5.2) 92.5 .1
Cy 98.4 [¢N)) 98.4 (1.6)
pD 9.5 9.8

DIC 714 72.3

Bayesian p-value 0578 - 0.550

Table V. Posterior mean and standard error for prevalence (), test sensitivities (S), and specificities
(C) and random effect coefficients (y;;r '\ D=d; ) from the random effects models 2—6 in the visceral

leishmaniasis diagnostic study.

Model 2 Model 3 Model 4 Model 5 Model 6

Parameter  Mean SE Mean SE Mean SE Mean SE Mean SE

i 37.2 3.1 29.2 (2.8) 35.1 4.3) 37.2 aG.D 36.5 3.
N 85.0 4.0) 86.3 4.0 85.5 4.0) 84.9 “.1) 86.2 3.9
Cy 97.8 (1.3) 88.2 24) 95.3 4.1) 97.7 (1.3) 97.6 (1.4)
Ay} 78.5 4.3) 77.2 4.6) 78.2 4.2) 78.2 4.2) 79.1 “.1)
Cy 92.0 (24) 82.3 2.9) 89.3 (4.5) 91.8 24) 915 24)
S3 69.3 5.0) 90.9 3.3) 74.3 (9.6) 69.3 5.0) 69.8 5.2)
Cs3 98.1 (1.1) 91.7 (1.2) 98.0 (1.1) 98.1 (1.1) 97.9 (1.2)
Sa 71.1 (5.0) 93.8 3.2) 76.5 9.9) 71.2 5.0) 71.9 5.2)
C4 98.5 0.9) 98.4 0.9 98.5 0.9 98.5 0.9) 98.5 0.9
121D=1 044  (033) 023  (0.20)
Y34|D=1 4.38 (1.05) 3.67 (1.83) 4.36 (1.03) 4.53 (1.16)

fixed effects models result in direct estimates of the test sensitivities and specificities as parameters
from the model. The random effects models require marginalization to obtain population-averaged
sensitivity and specificity estimates.

6. DISCUSSION

In this paper, we described the analysis of a diagnostic phase three-type study with correlated
test results [24]. On the basis of the working mechanism of the diagnostic tests, we identified a
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Figure 3. Estimated specificity of DAT (T1) from fixed effects models 2—4 applied on 1000 simulated
data sets with N =300 and 5000 and parameters obtained from applying model 2 in the visceral
leishmaniasis diagnostic study.

restricted number of dependence structures as a priori plausible. However, even with a severely
restricted dependence structure, the model containing all plausible correlations between tests was
not fully identifiable. In this model some parameters were estimable, whereas others were not.
Increasing the sample size would not improve estimability of these parameters, as illustrated in
Figure 3. Figure 3 shows the estimated specificity of DAT (C;) obtained from models 2—4 on 1000
simulated data sets. We simulated 500 data sets each with sample sizes 300 and 5000 using the
dependence structure assumed in model 2 and parameter estimates obtained from applying model 2
on the VL data. All three models showed an excellent fit to the data with Bayesian p-values close
to 0.5. Although increasing the sample size resulted in an increased precision in the estimate of C;
for models 2 and 3, the increased sample size did not improve the estimability of C; in model 4.

Using a Bayesian approach, prior information, e.g. from other studies or expert opinion, can be
incorporated in the model to improve identifiability of the model. Unfortunately, introducing prior
information on the parameters of interest may influence inference from the study more strongly
than warranted by the strength of the prior information and in a non-transparent way. Providing
prior information on the dependence structure can lead to an identifiable model in a more intuitive
way for the data analysts, but it might be difficult to elicit distributional priors from experts on
the test covariances or random effects coefficients. Consequently, when using informative priors in
this setting, it is important to provide informative priors for the dependence structure as well as for
the parameters of interest and to assess the variability of study conclusions under different priors.

These problems lead some authors to dismiss LCMs as a viable analysis method for the analysis
of diagnostic studies. Instead of LCMs, Alonzo and Pepe [25] advocate the use of a combined
reference standard (CRS) for the analysis of diagnostic studies. However, if there is genuine
uncertainty on the disease status of each subject, the analysis strategy should accurately reflect
this. Using a CRS assumes that we can in fact know the true disease status of each subject and
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that, by making a certain combination—which we know a priori—of individual tests, this perfect
diagnosis can be made for each patient. In contrast, LCMs allow the estimation of test sensitivities
and specificities incorporating the true uncertainty in disease status of the patients.

Evidently, if a perfect reference test was available in our study setting, its use would be preferable
to the modeling approach we applied to these data. Our study aim, the evaluation of diagnostic
accuracy of three novel tests in field settings, required, however, the use of a phase III study
design [26] in which consecutive patients were recruited at primary health-care centers. The use
of separately selected cases and non-diseased controls, as usual in phases I and II of diagnostic
test development, would result in spectrum bias [27]. Given the observed positive correlation of
KAtex and parasitological results, the use of parasitologically confirmed cases would bias results
in favor of a higher sensitivity estimate of the KAtex test. The use of the more sensitive, although
not perfect, aspiration of the spleen as a parasitological reference test was not routinely possible
in all primary health-care centers included in our study [5].

LCMs should only be used if one is willing to state all necessary assumptions and to critically
assess them. As for all statistical modeling, a purely data-driven approach is unlikely to be useful
and the choice of an appropriate LCM should be based on extensive subject knowledge. A priori,
a list of probable, plausible, and implausible test dependencies and a range of plausible models
should be defined. The fit of these models is then assessed using graphical methods and model
diagnostics. Models that show important lack of fit are then removed from further consideration. If
different plausible models show a similar and acceptable fit to the data and result in significantly
different conclusions, the results from the different models should be reported in a sensitivity
analysis.

In a Bayesian setting, contextual information can be incorporated in informative priors for some
of the model parameters. In this case, reparametrization, e.g. in the form of conditional dependencies
[10], may help in obtaining expert opinion. Experts may have opinions on the diagnostic test
accuracy and dependence structure, but although the first may be relatively straightforward to
quantify, the second may be hard to capture in an informative prior. In this case it is tempting
to specify informative priors for test sensitivities, specificities, or disease prevalence, but not for
the parameters describing the dependence structure. This may, however, result in an inference that
is consistent with prior opinion on diagnostic test accuracy but not on prior opinion on the test
dependencies. When using informative priors, an effort should be made to obtain meaningful priors
also on the dependence structure of the data. For example, when analyzing a population-based
phase III diagnostic study, correlations observed between test results in earlier research phases
may be used as priors for the dependence structure.

The issues described in this paper are not unique to LCMs. Similar problems occur in the model-
based analysis of incomplete data [28] and in general latent variable models [29]. Molenberghs
et al. [30] show that models for non-random missing data mechanisms cannot be fully tested
using the observed data. They stress the importance of contextual information and subject matter
knowledge to determine which models are most plausible. Sensitivity analysis is widely used in
missing data analysis to explore the impact of a range of plausible models of study conclusions.
These sensitivity analyses may show that some parameters vary considerably between different
models, whereas other parameters may be fairly stable. Attempts have been made to summarize
the results of these sensitivity analyses in graphical display or in a single summary, the region of
uncertainty, which covers both imprecision and ignorance on the parameters of interest [30, 31].
Applied to LCMs, these approaches may lead to further advances in the analysis of diagnostic
studies without a gold standard.
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APPENDIX A

Probability models for the 16 possible outcome patterns in the VL study are given below for the
conditional independence and six dependence models in both random effects and fixed effects
model formulations.

A.l. Definition of fixed effects models

The different fixed effects models are as follows:
P(Yi=y1, 2=y, V3=y3, Ya=y4)=
Model 0.

nS'IW (1— S])(l_y’)ng(l _ 52)(1—.\’2)33'3(1 _53)(1—)'3)531'4(1 _ S4)(1~.\'4)
+(1-mC{' M —cprey TP -y PP - )P TP -t

Model I
7.((S.l"l (1=, )(1—)'1)55'2(1 _ Sz)(l—)'z) +(__1)()’1—)'Z)COVIZIDzl)Sé‘?(l _53)(1—)'3)521'4(1 _ 54)(1-)‘4)
+(1=mC) TV —cpred TP -y PP -l T -yt

Model 2:
ns.l"l (1 _Sl)(|—.\‘I)S.2"2(1 _ 52)(1—_\'2)(5."3(1 _S3)(1—.\'3)S."4(1 _54)(1—."4)_'_(_1)()‘3—)‘4)C0V34|D=1)
+(1 _n)cfl_.“l)(] )\|C(] \7)( )”C“ H)( )\1C(l \4)(1 ))’4

Model 3:
TIS{' (1 —Sl)(l_'vl)ng(l _Sz)(l—.\'z)Sé‘B(] _53)(1—.\'3)52'4(1 _54)(1—.\'4)
+(1-my(Cy M a-cnhey P a -
+H(= D@ coviyp=0)C5 P (1 - C3) Y T (1 €y
Model 4:
7tSi"l (1-S; )(l—."l)Si;'Z(l _SZ)(I—.\'z)(Sé"S(l _ 53)(1—.\'3)S3'4(1 _ 54)(1—)’4)
H(=1)3 7 covga pp) +(1—m)(C A —cphied P (1 - oy
=D covip=0) €5 P (1= C3)MCy V(1o
Model 5:
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A.2. Definition of random effects models

In the random effects formulation, the probability of an outcome pattern for individual patients,
conditional on their disease status and random effects value, is given by P(Y;1=y1, Yio=y2,Yi3=
v3, Yia=ya|Di=d;, Z; =Zi)=l_[‘}=1 P(Y;j=yj|Di=d;,Z; =%;), where P(Y;j=1|Di=d;, Zi =2;)
as given in the table below (see also equation 6)):

Model Test Diseased subjects Non-diseased subjects
0 T1 " (o) 7" (o10)
T2 ™ (o21) 7" (o20)
T3 " (o31) 7~ (030)
T4 " (1) 1! (o)
1 Tl 1~ +y121p=121) 1~ (o10)
T2 0" (021 +7121p=120) 7~ (o20)
T3 " (o31) ™ (o30)
T4 7~ () 0™ (20)
2 Tl o) " (10
T2 1~ (1) 1! (a20)
T3 ™ @31+ 734 p=120) 7~ (@30)
T4 1™ (a1 + 7341 p=121) 1" (euap)
3 T1 Gy 1! (@10+712)p=021)
T2 1~ o) 1~ (0204712 p=02)
T3 " (@31) 1~ (at30)
T4 n~ " (aa1) n~(0)
4 Tl 7 o) 7~} (t10+7121p=0221)
T2 ! (o1) 77 (20 +7121p=022i)
T3 ™' (@31 + 734 p=1210) ™" (a30)
T4 7! (a1 +734p=1211) 1~ (o)
5 T1 1~ o1 +y121p=1211) 1~ (at10)
T2 1~ @21 +712)p=1214) 1~ (er20)
T3 1! (931 +341p=1221) 7! (#30)
T4 1~ (a1 + 34 p=1221) 7~ (aa0)
6 Tl 7 @ +y121p=12) " (@10
T2 1~ (21 +712,p=12i) 1~ ! (020)
T3 ' (@31 — V34 p=121) 1~ (a30)
T4 Y —Y34p=1%i) 1~ (ea0)

With z;, z1i, zoi being the Gaussian random effects with mean 0 and standard deviation 1 and
n 1 (y)=1/1+e7).

Copyright © 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:4469-4488
DOI: 10.1002/sim



BAYESIAN LCMS FOR DIAGNOSTIC ACCURACY STUDIES 4487

ACKNOWLEDGEMENTS

The authors would like to thank Abraham Aseffa, Sayda El-Safi, Asrat Hailu, Jane Mbui, Maowia Mukhtar,
Suman Rijal, Shyam Sundar, Monique Wasunna, and Rosanna Peeling for study conduct and data collection
and Dirk Berkvens and Niko Speybroek for their helpful comments. The third author acknowledges the
partial support from the Interuniversity Attraction Poles Programs P5/24 and P6/03—Belgian State—
Federal Office for Scientific Technical and Cultural Affairs.

14.

15.

16.

17.

18.

REFERENCES

. Zijistra EE, Ali MS, el Hassan AM, el Toum IA, Satti M, Ghalib HW, Kager PA. Kala-azar: a comparative

study of parasitological methods and the direct agglutination test in diagnosis. Transactions of the Royal Society
of Tropical Medicine and Hygiene 1992; 86(5):505-507.

. Chappuis F, Rijal S, Soto A, Menten J, Boelaert M. A meta-analysis of the diagnostic performance of the direct

agglutination test and rk39 dipstick for visceral leishmaniasis. British Medical Journal 2006; 333(7571):723-7261.
DOI: 10.1136/bmj.38917.503056.7C.

. Albert PS, Dodd LE. A cautionary note on the robustness of latent class models for estimating diagnostic error

without a gold standard. Biometrics 2004; 60(2):427-435. DOI: 10.1111/j.0006-341X.2004.00187.x.

. Dendukuri N, Joseph L. Bayesian approaches to modeling the conditional dependence between multiple tests.

Biometrics 2001; 57:158-167. DOI: 10.1111/;.0006-341X.2001.00158.x.

. Boelaert M, El Safi S, Hailu A, Mukhtar M, Rijal S, Sundar S, Wasunna M, Aseffa A, Mbui J, Menten J,

Desjeux P, Peeling RW. Diagnostic tests for kala-azar management at primary care level: a head-on comparison
of the freeze-dried DAT, rk39 strip test, and KAtex in a multi-centre study in East-Africa and the Indian
subcontinent. Transactions of the Royal Society of Tropical Medicine and Hygiene 2008; 102(1):32-40. DOI:
10.1016/j.trstmh.2007.09.003.

. Qu Y, Tan M, Kutner MH. Random effects models in latent class analysis for evaluating accuracy of diagnostic

tests. Biometrics 1996; 52:797-810. DOI: 10.2307/2533043.

.Qu Y, Hadgu A. A model for evaluating sensitivity and specificity for correlated diagnostic tests in efficacy

studies with an imperfect reference test. Journal of the American Statistical Association 1998; 93:920-928.

. McCutcheon AL. Latent Class Analysis. Quantitative Applications in the Social Sciences Series, vol. 64. Sage

Publications: Thousand Oaks, CA, 1987.

. Garrett ES, Eaton WW, Zeger SL. Methods for evaluating the performance of diagnostic tests in the absence of a

gold standard: a latent class model approach. Statistics in Medicine 2002; 21:1289-1307. DOI: 10.1002/sim.1105.

. Berkvens D, Speybroeck N, Praet N, Adel A, Lesaffre E. Estimating disease prevalence in a bayesian framework

using probabilistic constraints. Epidemiology 2006; 17(2):145-153. DOI: 10.1097/01.ede.0000198422.64801.8d.

. Hadgu A, Qu Y. A biomedical application of latent class models with random effects. Journal of the Royal

Statistical Society Series C—Applied Statistics 1998; 47:603-616. DOI: 10.1111/1467-9876.00131.

. Goetghebeur E, Liinev J, Boelaert M, der Stuyft PV. Diagnostic test analyses in search of their gold standard:

latent class analyses with random effects. Statistical Methods in Medical Research 2000; 9:231-248. DOL
10.1177/096228020000900304.

. Albert PS, McShane LM, Shih JH, Network TUCIBT. Latent class modeling approaches for assessing diagnostic

error without a gold standard: with applications to p53 immunohistochemical assay in bladder tumors. Biometrics
2001; 57(2):610-619. DOI: 10.1111/;.0006-341X.2001.00610.x.

Goodman LA. Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika
1974; 61(2):215-231. DOI: 10.2307/2334349.

Formann AK. Measurement errors in caries diagnosis: some further latent class models. Biometrics 1994,
50(3):865-875. DOI: 10.2307/2532801.

Boelaert M, Aoun K, Liinev J, Goetghebeur E, Stuyft PVD. The potential of latent class analysis in diagnostic
test validation for canine leishmania infantum infection. Epidemiology and Infection 1999; 123(3):499-506. DOI:
10.1017/S0950268899003040.

Yang I, Becker MP. Latent variable modeling of diagnostic accuracy. Biometrics 1997; 53:948-958. DOI:
10.2307/2533555.

Garrett ES, Zeger SL. Latent class model diagnosis. Biometrics 2000; 56(4):1055-1067. DOL: 10.1111/;.0006-
341X.2000.01055.x.

Copyright © 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:4469-4488

DOI: 10.1002/sim



4488 J. MENTEN, M. BOELAERT AND E. LESAFFRE

19. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis (2nd edn). Chapman & Hall, CRC: Boca
Raton, FL, U.S.A., 2004.

20. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit
(with Discussion and Rejoinder). Journal of the Royal Statistical Society, Series B 2002; 64:583-639. DOL
10.1111/1467-9868.00353.

21. Deniau M, Canavate C, Faraut-Gambarelli F, Marty P. The biological diagnosis of leishmaniasis in HIV-
infected patients. Annals of Tropical Medicine and Parasitology 2003; 97(Suppl. 1):115-133. DOI: 10.1179/
000349803225002598.

22. Black MA, Craig BA. Estimating disease prevalence in the absence of a gold standard. Statistics in Medicine
2002; 21(18):2653-2669. DOI: 10.1002/sim.1178.

23. Agresti A, Hitchcock DB. Bayesian inference for categorical data analysis: a survey. Technical Report, University
of Florida, FL, U.S.A., 2005.

24. Pepe MS. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press:
Oxford, U.K., 2003.

25. Alonzo TA, Pepe MS. Using a combination of reference tests to assess the accuracy of a new diagnostic test.
Statistics in Medicine 1999; 18(22):2987-3003.

26. Pepe MS. Evaluating technologies for classification and prediction in medicine. Statistics in Medicine 2005;
24(24):3687-3696. DOI: 10.1002/sim.2431.

27. Knottnerus JA, van Weel C, Muris JWM. Evidence base of clinical diagnosis—evaluation of diagnostic procedures.
British Medical Journal 2002; 324(7335):477-480. DOI: 10.1136/bm;j.324.7335.477.

28. Molenberghs G, Kenward MG. Missing Data in Clinical Studies. Wiley: Hoboken, NJ, U.S.A., 2007.

29, Skrondal A, Rabe-Hesketh AR. Generalized Latent Variable Modeling—Multilevel, Longitudinal and Structural
Equation Models. Chapman & Hall, CRC: Boca Raton, FL, U.S.A., 2004.

30. Molenberghs G, Goetghebeur EJT, Lipsitz SR, Kenward MG. Nonrandom missingness in categorical data:
strengths and limitations. American Statistician 1999; 53(2):110-118.

31. Molenberghs G, Kenward MG, Goetghebeur E. Sensitivity analysis for incomplete contingency tables: the
Slovenian plebiscite case. Journal of the Royal Statistical Society Series C—Applied Statistics 2001; 50:15-29.
DOIL 10.1111/1467-9876.00217.

Copyright © 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:4469-4488

DOI: 10.1002/sim





