
www.elsevier.com/locate/asoc

Applied Soft Computing 8 (2008) 337–349
Fitness inheritance in multiple objective evolutionary algorithms:

A test bench and real-world evaluation

E.I. Ducheyne a, B. De Baets b,*, R.R. De Wulf c

a Veterinary Department, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerpen, Belgium
b Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Coupure Links 653, 9000 Gent, Belgium

c Laboratory of Forest Management and Spatial Information, Ghent University, Coupure Links 653, 9000 Gent, Belgium

Received 14 January 2005; received in revised form 1 February 2007; accepted 8 February 2007

Available online 28 February 2007
Abstract
In many real-world applications of evolutionary algorithms, the fitness of an individual has to be derived using complex models and time-

consuming computations. Especially in the case of multiple objective optimisation problems, the time needed to evaluate these individuals

increases exponentially with the number of objectives due to the ‘curse of dimensionality’ [J. Chen, D.E. Goldberg, S. Ho, K. Sastry, Fitness

inheritance in multi-objective optimization, in: W.B. Langdon et al. (Eds.), GECCO 2002: Proceedings of the Genetic and Evolutionary

Computation Conference, July 9–13, Morgan Kaufmann Publishers, New York, 2002, pp. 319–326]. This in turn leads to a slower convergence of

the evolutionary algorithms. It is not feasible to use time-consuming models with large population sizes unless the time to evaluate the objective

functions is reduced. Fitness inheritance is an efficiency enhancement technique that was originally proposed by Smith et al. [R.E. Smith, B.A.

Dike, S.A. Stegmann, Fitness inheritance in genetic algorithms, in: Proceedings of the 1995 ACM Symposium on Applied Computing, February

26–28, ACM, Nashville, TN, USA, 1995] to improve the performance of genetic algorithms. Sastry et al. [K. Sastry, D.E. Goldberg, M. Pelikan,

Don’t evaluate, inherit, in: L. Spector et al. (Eds.), GECCO 2001: Proceedings of the Genetic and Evolutionary Computation Conference, Morgan

Kaufmann Publishers, San Francisco, 2001, pp. 551–558] and Chen et al. [J. Chen, D.E. Goldberg, S. Ho, K. Sastry, Fitness inheritance in multi-

objective optimization, in: W.B. Langdon et al. (Eds.), GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, July

9–13, Morgan Kaufmann Publishers, New York, 2002, pp. 319–326] have developed analytical models for fitness inheritance. In this paper, the

usefulness of fitness inheritance for a set of popular and separable multiple objective test functions as well as a non-separable real-world problem is

evaluated based on unary performance measures testing closeness to the Pareto-optimal front, uniform distribution along and extent of the obtained

Pareto front. A statistical evaluation of the performance of an NSGA-II like algorithm on the basis of these unary performance measures suggests

that especially for non-convex or non-continuous problems the use of fitness inheritance negatively affects the closeness to the Pareto-optimal

front.

2007 Elsevier B.V. All rights reserved.

Keywords: Fitness inheritance; Multiple objective genetic algorithm; Real-world application
1. Theoretical foundations of fitness inheritance

1.1. Single objective fitness inheritance

Smith et al. [19] were the first to introduce the fitness

inheritance technique. They point out that for some (and

probably most) real-world optimisation problems, genetic

algorithms (GA) cannot be applied because the cost of

determining the fitness values for an entire population is too
* Corresponding author. Tel.: +32 9 264 59 41; fax: +32 9 264 62 20.

E-mail address: Bernard.DeBaets@ugent.be (B. De Baets).

1568-4946/$ – see front matter # 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2007.02.003
high. Earlier on, Grefenstette and Fitzpatrick [12] tried to reduce

the evaluation time by partially evaluating each individual

instead of completely evaluating it and by allowing the genetic

algorithm to run for a larger number of generations. They

concluded that it is more effective to evaluate fast noisy fitness

functions for more generations than to evaluate the slow but exact

functions for fewer generations. Smith et al. [19] attempted a

similar procedure, but instead of evaluating parts of the

individuals, they evaluated only parts of the population. In

order to derive a fitness value for the offspring that is not

evaluated, they proposed two methods: the average inheritance,

where the offspring’s fitness is calculated as the average value of

the fitness of its parents, and the proportional inheritance where

mailto:Bernard.DeBaets@ugent.be
http://dx.doi.org/10.1016/j.asoc.2007.02.003

E.I. Ducheyne et al. / Applied Soft Computing 8 (2008) 337–349338
this average is weighed according to the similarity between the

offspring and its parents.

Smith et al. [19] applied the schema theory to explain why

the genetic algorithm performance is not disturbed by the noisy

fitness function and based their calculations on two character-

istics of genetic algorithms:
(1) A
 child can inherit schemata common to both parents and in

that case, the schemata fitness values are correctly

determined. The update of the genetic algorithm then

reflects the average fitness of the common schemata in the

individuals.
(2) A
 child can inherit schemata that are only present in one

parent and this leads to an approximate fitness value of

those schemata.
In the case of fitness inheritance, the fitness values of the

schemata belonging to one parent only are either deemed

constant in the case of average fitness inheritance, or these

values are considered to be linearly related to the number of bits

it inherited from its parents in the case of proportional fitness

inheritance.

For the One Max problem, Smith et al. [19] compared the

performance of the conventional genetic algorithm with that of

the inheritance techniques. When all individuals were

evaluated, the optimum (all 1s) is reliably reached after

10,200 evaluations. In the case of the inheritance approaches

this was attained after only 2640 function evaluations. They

argued that this might be caused by the simplicity of the One

Max problem and applied the same techniques to an aircraft

routing problem. For this real-world application, the length of

the flying route had to be minimised, while the aircraft had to

avoid detection by a threat along the route. Each time the

aircraft was detected, a penalty was added to the objective

function. Their preliminary results showed that the best results

could be obtained if only one individual at each generation is

evaluated, provided that elitism is applied. This showed that

fitness inheritance had the potential to improve GA perfor-

mance.

Even though this approach seemed promising, it took

another six years before this work was continued. Sastry et al.

[17] investigated the time to convergence, population sizing

and the optimal proportion of inheritance for the One Max

problem. The optimal proportion is the amount of inheritance

that can be used in such a way that the number of function

evaluations is minimised. They found that the time until

population convergence is given by

tconv ¼
p

2I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

1� pi

;

s
(1)

where I is the selection intensity, l the length of the chromo-

some and pi is the fraction of the individuals that inherit their

value. The population size n can be written as

n ¼ � 2k�1 logðcÞ
ffiffiffi
p
p

1� p3
i

ffiffiffiffiffi
s2

f

q
; (2)
where k is the size of the building block, c the failure rate or the

rate that one accepts for not reaching the optimal value and s2
f is

the variance of the noisy fitness functions. This noise is caused by

the incorrect fitness value for the inheritance individuals. Finally,

pi is once more the proportion of individuals that inherit fitness

values. They also determined that the optimal proportion of

inheritance p�i lies between 54 and 55.8%. This is considerably

less than what Smith et al. [19] indicated: they calculated that for

the One Max problem the proportion of inheritance could be

raised up to 90% without loss of optimality. By building these

analytical models, Sastry et al. [17] were the first to provide a

strong theoretical basis for fitness inheritance.

1.2. Multiple objective fitness inheritance

Chen et al. [3] extended the analytical model provided by

Sastry et al. [17] to multiple objective problems. They included

an extra parameter M to account for the number of niches in the

multiple objective problem. The problem for which the

population sizing model and the time to convergence was

derived was the bi-objective One Max problem. This problem is

defined by

Maximise
f 1ðs; x1Þ ¼ l� dðs; x1Þ
f 2ðs; x2Þ ¼ l� dðs; x2Þ

�
(3)

where s is the string to be evaluated, x1 and x2 the two fixed

reference strings, l the string length and d(s, xi) is the Hamming

distance between string s and string xi. Chen et al. [3] used as

reference string x1 all ones and as reference string x2 all ones

except for the first four bits. Their model for convergence time is

tconv ¼
p

2I

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l

1� pi

s ffi
1þM � 1

l

r
: (4)

The population size n can be determined as follows

n ¼ � 2k�1 logðcÞM
ffiffiffi
p
p

1� p3
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

f þ s2
N ;

q
(5)

where s2
N is the noise variance of the other niches. These

models are very similar to those by Sastry et al. [17] and if

M = 1 they reduce to the single objective models.

Both models were experimentally tested on the bi-objective

One Max problem. It was found that when the inheritance

proportion is smaller than 0.7, the results fit the predicted

convergence and population-sizing model, but for large

inheritance proportions the models were no longer valid.

Other than the preliminary results for the aircraft routing

problem by Smith et al. [19], there has been no report of real-

world applications that use fitness inheritance. The question

arises whether this efficiency enhancement technique can cope

with real-world applications.

To investigate this, both the average and proportional

inheritance techniques will be tested on a test suite of functions

provided by Zitzler [21] and Zitzler et al. [22], which is the

most widely suite of benchmark problems employed (Huband

et al. [14]).

E.I. Ducheyne et al. / Applied Soft Computing 8 (2008) 337–349 339
2. Test functions and performance measures

2.1. Test functions

Zitzler [21] and Zitzler et al. [22] presented a set of six test

functions to test whether multiple objective genetic algorithms

can cope with specific characteristics (i.e. convexity, concavety

and discontinuity). Based on preliminary results presented in

Ducheyne et al. [7], where the outcome of fitness inheritance

was visually inspected, these six functions where regrouped

into three categories. In this paper three functions from the test

suite are used because they represent three different categories:

ZDT1, a convex function, ZDT2, a function with a non-convex

Pareto front and ZDT3, a discontinuous function. Each of these

functions has independent genes, thus it should be feasible to

use fitness inheritance to speed up the optimisation process.

Consider the following functions:

f ðx1Þ ¼ x1;

gðx2; . . . ; xnÞ ¼ 1þ
9 �

Pn
i¼2 xi

� �
n� 1

;

where n = 30 and xi 2 [0, 1].

(1) ZDT1 has a convex Pareto-optimal front: f1 = f , g1 = g and
h1ð f 1; g1Þ ¼ 1�
ffiffiffiffiffiffi
f 1

g1

s
: (6)

The Pareto-optimal front is formed when g1 equals 1.
(2) Z
DT2 is the non-convex counterpart of the first test

function: f2 = f, g2 = g and

h2ð f 2; g2Þ ¼ 1�
�

f 2

g2

�2

: (7)

The Pareto-optimal front is formed when g2 equals 1.
(3) Z
DT3 tests whether a genetic algorithm is able to cope with

discreteness in the Pareto-optimal front: f3 = f, g3 = g and
h3ð f 3; g3Þ ¼ 1�
ffiffiffiffiffiffi
f 3

g3

s
�
�

f 3

g3

�
sinð10p f 3Þ: (8)

The Pareto-optimal front is formed when g3 equals 1. The sine

function introduces discontinuity in the Pareto-optimal front

but not in the objective space.

In each of the above cases, the goal is to minimise the

functions f i, gi, hi simultaneously. The other three functions

from the test suite also fall under one of the above categories.

Because separable test functions are not representative for real-

world problems (Bäck and Michalewicz [2]), a well-studied

non-separable real world forest management optimisation pro-

blem (Ducheyne et al. [8–10]) was also used as test problem.

2.2. Performance measures

For the analysis of the fitness inheritance, the three

previously described test functions are used. The Pareto fronts

achieved by the evolutionary algorithm without fitness

inheritance, as well as the Pareto fronts for the two genetic
algorithms with average or proportional fitness inheritance, will

be presented. The Pareto-optimal front is drawn for comparison

purposes. The comparison of the outcome of different

algorithms is not an easy task. Various unary and binary

performance measures have been proposed in the literature.

The use of unary performance measures to determine whether

one algorithm is better than another is inappropriate as was

shown by Zitzler et al. [24]. However, in this paper we want to

investigate whether the use of fitness inheritance has an

influence on specific performance characteristics which cannot

be analysed based on n-ary performance measures. Because of

this, we will apply commonly used unary performance

measures in order to evaluate the following characteristics of

a multiple objective genetic algorithm:
(1) c
loseness to the Pareto-optimal front;
(2) t
he distribution of solutions along the obtained Pareto front;
(3) t
he extent of the obtained Pareto front.
2.2.1. Testing closeness

Van Veldhuizen and Lamont [20] proposed two measures:

the error ratio and the generational distance. The error ratio is

simply calculated as the ratio of the number of solutions not on

the Pareto-optimal front to the population size:

M1 ¼
Pn

i¼1 ei

n
; (9)

where ei = 0 if individual i is on the Pareto-optimal front P* and

ei = 1 if it is not. This measure is bounded by 0 (all solutions are

on the Pareto-optimal front) and 1 (none of the solutions are on

the Pareto-optimal front). One of the main drawbacks of this

measure is that it can only indicate whether there are any

solutions on the Pareto-optimal front. If for two algorithms

none of the solutions are on this front, the error ratio cannot

distinguish between them [4]. Therefore, Deb redefines the

error conditions as follows [4]: if the minimum distance

between an individual i and the Pareto-optimal front P* is

larger than a threshold d, then the individual is counted as an

error. If a suitable threshold is used, then the d-error ratio can

give an indication about the proportion of individuals within a

distance d of the Pareto-optimal front [4].

Another measure proposed by Van Veldhuizen and Lamont

[20] is the generational distance. The generational distance is a

value representing how far the current front is from the optimal

front. The value is defined as

M2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 nd2

i

q
n

; (10)

where n is the number of individuals in the current front and di

is the distance between each of the individuals and the nearest

individual on the Pareto-optimal front. This measure can also

be used as a measure of fluctuation between several repeti-

tions. Deb [4] proposes to use the variance in the distance

values to test the robustness of an algorithm. Both measures

defined by Van Veldhuizen and Lamont [20] are scaling

dependent.

Fig. 1. The overall Pareto front for test function 1. On the x-axis F1 = f1, on the

y-axis F2 = h1 and on the z-axis F3 = g1.

E.I. Ducheyne et al. / Applied Soft Computing 8 (2008) 337–349340
2.2.2. Testing spread among the non-dominated points

Schott [18] introduced a spacing measure based on a

variance-like measure. For the spacing measure the variance

between the distances of each solution on the Pareto front and

the mean distance along the Pareto front is calculated. The

spacing measure is defined by

M3 ¼
1

n� 1

Xn

i¼1

ðdi � d̄Þ2: (11)

2.2.3. Testing the extent of the obtained Pareto-front

Deb and Jain [6] extended the spacing measure because the it

does not take into account the maximum spread between the

most extreme solutions. The spread measure is defined by

M4 ¼
PM

m¼1 de
m þ

PQ
i¼1ðdi � d̄ÞPM

m¼1 de
mQd̄

; (12)

where Q denotes the number of solutions in the Pareto front, di

the Euclidean distance of solution i to the closest solution j in

the Pareto front, d̄ the average of these distances and de
m is the

distance between the extreme solutions of the Pareto and

Pareto-optimal fronts according to objective dimension m.

If the spacing and spread measures are averaged over a

number of repetitions, then a low mean value indicates evenly

spaced solutions, while a high mean value indicates that the

solutions are not very well distributed along the front. Knowles

and Corne [16] indicate that these measures can only be used in

conjunction with other measures. In that case it provides

information about the vector distributions. An advantage of

these measures is their low computational cost.

2.2.4. Combining spread, extent and closeness

Another measure introduced by Zitzler [21] is the

hypervolume, which calculates the hypervolume enclosed by

a solution set A and a reference point. It computes the area of

the search space dominated by this solution set. In many aspects

this measure is a very good one [16,23] but it has one caveat: the

size of the dominated space is easily influenced by the reference

point, and care has to be taken before any decisive conclusions

based on this measure can be made. A disadvantage is the larger

computational overhead, but While et al. [14] have developped

a faster algorithm to compute the hypervolume.

2.3. Performance analysis

The generational distance, error ratio, spacing, spread and

hypervolume measures are used to compare the different

approaches. These measures are calculated every 100 function

evaluations for the non-inheritance approach and every 50

function evaluations for the inheritance techniques. For all three

algorithms this is done at every generation. The difference in

means of the above measures over time is determined by a One

Way ANOVA test if the data is normally distributed and

homoscedastic, otherwise a non-parametric Kruskal–Wallis

test is applied. All tests are done at a significance level of 95%.
3. Solving the test functions with fitness inheritance

3.1. Parameter settings

The experiments were performed using a NSGA-II like

genetic algorithm with binary tournament selection, one-point

crossover with crossover probability of 0.8 and a uniform

mutation rate of 0.01. The population size was set to 100 and

the number of generations was set to 200. These settings are

the same as in [21], only differing in the number of

generations. The encoding of the decision vector was also

the same as in [21]: an individual is represented as a bit vector

where each parameter xi is represented by 30 bits. The

crowding distance assignment procedure was used for sharing.

The fitness assignment was proposed by Deb et al. [5] and

equals the number of solutions that dominate the current

solution. All experiments were repeated 10 times. The

reported optimal proportion of 54% is used to test the

performance of the genetic algorithms. The maximum number

of fitness evaluations for the inheritance approach should be

the same as for the non-inheritance approach, therefore the

number of generations is doubled to 400 generations to allow

for a fair comparison.

3.2. Convex functions

3.2.1. Visual comparison

The standard genetic algorithm is capable of finding a Pareto

front very close to the optimal Pareto front for the first convex

test function (Fig. 1). Both inheritance strategies approximate

the Pareto-optimal front well. If there is no inheritance, the

variance between the different points is low; on the other hand,

the points from the proportional inheritance approach are much

more scattered. The solutions from the two inheritance

approaches are also much more concentrated near the point

(f1, h1) = (0, 1).

Fig. 2. Evolution of mean generational distance, mean error ratio, mean spacing, mean spread and mean hypervolume over the number of function evaluations for the

first test function (number of repetitions = 10).

E.I. Ducheyne et al. / Applied Soft Computing 8 (2008) 337–349 341
3.2.2. Generational distance

The evolution of the mean generational distance computed

over 10 repetitions over the function evaluations for the

standard genetic algorithm is very similar to that of the two

inheritance techniques (Fig. 2). In all three cases, the decrease

in generational distance is initially strong, but becomes smaller

as the population converges. The data was statistically

analysed using a One Way ANOVA test because on all

occasions it was normally distributed and homoscedastic. All

p-values for the relevant tests of normality (Shapiro–Wilk),
homoscedasticity (Levene’s test) and One Way ANOVA are

listed in Table 1. Before 1800 function evaluations, the

generational distance is significantly lower for the inheritance

techniques than for the regular genetic algorithm (p = 0.000).

From then on, there is no difference (p > 0.05) until 16,800

function evaluations. After that, the generational distance for

the non-inheritance approach is significantly lower than for the

proportional inheritance approach but not than the average

inheritance technique (p = 0.037) according to Tukey’s

posthoc-test.

Table 1

p-Values for normality, homoscedasticity and One Way ANOVA for different

numbers of function evaluations for generational distance for the first test

function (non, no inheritance; average, average inheritance; proportional,

proportional inheritance)

Evaluations Group Shapiro–Wilk Levene One Way ANOVA

100 Non 0.971 0.776 0.000

Average 0.662

Proportional 0.380

1,800 Non 0.688 0.776 0.067

Average 0.885

Proportional 0.695

16,800 Non 0.482 0.919 0.052

Average 0.984

Proportional 0.493

16,900 Non 0.470 0.902 0.037

Average 0.910

Proportional 0.407

Table 3

p-Values for normality, homoscedasticity and Kruskal–Wallis for different

numbers of function evaluations for spread for the first test function (number

of repetitions = 10), for 20,000 function evaluations One Way ANOVA is used

(non, no inheritance; average, average inheritance; proportional, proportional

inheritance)

Evaluations Group Shapiro–Wilk Levene Kruskal–Wallis

3,200 Non 0.200 0.010 0.000

Average 0.193

Proportional 0.644

6,000 Non 0.390 0.216 0.002

Average 0.017

Proportional 0.636

10,000 Non 0.442 0.004 0.000

Average 0.455

Proportional 0.583

20,000 Non 0.428 0.058 0.000

Average 0.483

Proportional 0.713

Table 4

p-Values for normality, homoscedasticity and One Way ANOVA for different

E.I. Ducheyne et al. / Applied Soft Computing 8 (2008) 337–349342
3.2.3. Error ratio

The previous findings are confirmed by the error ratio:

initially it is 1 for all algorithms, but after 10,000 function

evaluations the error ratio declines quickly. The error ratio of

the inheritance techniques is higher than that of the standard

genetic algorithm, especially near the end of the evolution

(Fig. 2). Apparently the convergence towards the front is

hampered by the fitness inheritance. The effect of the

inheritance on the error ratio was also investigated statisti-

cally: for each 100 function evaluations, the Kruskal–Wallis

test was performed because the data was not normally

distributed in all cases, and because the data was not

homoscedastic. According to this test, there is no significant

difference present between the three approaches, but near the

end of the evolution, the test statistic p is close to 0.05. This

indicates that if the number of function evaluations increases

even more, the inheritance techniques might perform worse

than the regular technique.

3.2.4. Spacing and spread

Spacing and spread on the other hand are not so much

influenced by the inheritance techniques: in all cases the

crowding distance operator ensures that the spacing and spread

remain more or less equal over the complete evolution. The

effect of the inheritance techniques was again tested using a

Kruskal–Wallis test as once more the data was not normally

distributed nor homoscedastic (Table 2). Initially the spacing
Table 2

p-Values for normality, homoscedasticity and Kruskal–Wallis for different

numbers of function evaluations for spacing for the first test function (number

of repetitions = 10) (non, no inheritance; average, average inheritance; propor-

tional, proportional inheritance)

Evaluations Group Shapiro–Wilk Levene Kruskal–Wallis

17,500 Non 0.377 0.481 0.422

Average 0.010

Proportional 0.010
measure for the non-inheritance approach is significantly lower

than for the other two approaches (0.1 � p � 0.2), but after

17,500 function evaluations there is no longer a difference

between non-inheritance and average inheritance (Fig. 2). In

the last phase, it is inconclusive whether there is a difference or

not: p = 0.047 � 0.05.

The Kruskal–Wallis test for the spread measure clearly

shows that in all cases there are significant differences. For all

cases p = 0 even though this is not clear from Fig. 2. All p-

values for the relevant tests of normality (Shapiro–Wilk),

homoscedasticity (Levene’s test) and One Way ANOVA and

Kruskal–Wallis are listed in Table 3. Initially all groups are

significantly different from each other (p = 0.000), and the

standard genetic algorithm performs the worst in terms of

spread. At 6000 function evaluations, they have more or less the

same performance but still the Kruskal–Wallist test indicates

significant differences (p = 0.002). Even at the end of the

evolution there is still a significant difference between the

proportional inheritance and no-inheritance strategy

(p = 0.000) according to Tukey’s posthoc test.

It seems that the amount of spacing and spread is highly

determined by the initial spacing in the population. Especially

spacing does not change much over the course of the genetic

algorithm. Spread is lowered somewhat more than spacing but
numbers of function evaluations for hypervolume for the first test function

(number of repetitions = 10) (non, no inheritance; average, average inheritance;

proportional, proportional inheritance)

Evaluations Group Shapiro–Wilk Levene One Way ANOVA

4,000 Non 0.960 0.180 0.000

Average 0.482

Proportional 0.773

16,000 Non 0.930 0.719 0.002

Average 0.482

Proportional 0.773

Fig. 3. The overall Pareto front for test function 2. On the x-axis F1 = f2, on the

y-axis F2 = h2 and on the z-axis F3 = g2.

E.I. Ducheyne et al. / Applied Soft Computing 8 (2008) 337–349 343
still remains much the same. This might indicate that the

crowding distance measure is more a ‘diversity preserving’

measure than a ‘diversity stimulating’ measure.

3.2.5. Hypervolume

The inheritance techniques show a higher error ratio and this

is confirmed by the hypervolume measure: it is lower for both

inheritance techniques than for the standard genetic algorithm

(Fig. 2). All p-values for the relevant tests of normality

(Shapiro–Wilk), homoscedasticity (Levene’s test) and One

Way ANOVA are listed in Table 4. Up until 4000 function

evaluations this difference is not significant. Between 4000 and

16,000 there is a difference between the non-inheritance and the

average inheritance approach according to Tukey’s posthoc-

test. Beyond this point this posthoc-test indicates a significant

difference between the non-inheritance approach on the one

hand and the two inheritance strategies on the other hand.

3.3. Functions with a non-convex Pareto front

3.3.1. Visual comparison

The algorithms based on fitness inheritance are not suitable

for solving optimisation problems with a non-convex Pareto

front (Fig. 3). The points found by the inheritance approaches

are much further away from the Pareto-optimal front.

Furthermore, there are many points near the origin of the x-

axis. This phenomenon was also observed for the first test

function.

3.3.2. Generational distance

The generational distance is higher for both inheritance

techniques than for the non-inheritance approach and this is

true for the complete evolution (Fig. 4). Between the two

inheritance techniques, however, there is a visual difference.

The data was statistically analysed using a One Way ANOVA.

All p-values for the relevant tests of normality (Shapiro–Wilk),

homoscedasticity (Levene’s test) and One Way ANOVA are

listed in Table 5. At 600 function evaluations, the ANOVA test
statistic shows that there are no significant differences between

the three algorithms (p = 0.21). At 700 function evaluations

this changes and there is no conclusion possible as p = 0.050.

At 800 evaluations however p = 0.018. Tukey’s posthoc-test

indicates that there is a significant difference between the non-

inheritance and the average inheritance approach, but is

inconclusive for the proportional approach. This remains the

same until 1600 function evaluations. At that point, Tukey’s

posthoc-test shows that there is a significant difference between

the non-inheritance approach on the one hand and both

inheritance techniques on the other hand.

3.3.3. Error ratio

The error ratio of the two inheritance techniques is much

worse than for the non-inheritance approach. Whereas the error

ratio drops after 10,000 evaluations for the regular genetic

algorithm, the error ratio for the two inheritance approaches

stays 1 for the complete duration of the genetic algorithm. As

their error ratio remains constant, no statistical analysis is

possible. Still, from Fig. 4 follows clearly that the inheritance

techniques do not perform well in terms of error ratio, and that

they fail to reach the Pareto-optimal front for a function with a

non-convex Pareto front.

3.3.4. Spacing and spread

Spacing and spread are again not influenced by the

inheritance techniques. The crowding distance operator ensures

once more that the spacing and spread remains more or less

equal over the complete evolution (Fig. 4).

The spacing of the non-inheritance approach is less than that

of the two inheritance approaches, and the spacing of the

average inheritance is better than that of the proportional

inheritance technique. Before 8000 function evaluations the

difference between the spacing is significant only between non-

inheritance and proportional inheritance. Beyond this point,

there is a difference between the non-inheritance approach and

the two inheritance approaches (Table 6).

Looking at spread, initially the non-inheritance approach

performs worse than the two other approaches. This difference

is not significant with respect to the average inheritance

approach, but is significant with respect to the proportional

inheritance approach until 6000 function evaluations

(p = 0.000) (Table 7). After 6000 function evaluations, there

is no longer a difference between the non-inheritance and

inheritance approaches but there is a significant difference

between the two inheritance procedures: according to Tukey’s

posthoc test, average inheritance has a significantly higher

spread than proportional inheritance (p = 0.013).

3.3.5. Hypervolume

The hypervolume measure again confirms the findings of the

error ratio and the generational distance: this value is lower for

both inheritance techniques than for the standard genetic

algorithm (Fig. 4). Up until 1400 function evaluations, this

difference is not significant between the three groups

(p = 0.054) (Table 8). Between 1400 and 1800 function

evaluations, the non-inheritance approach is only significantly

Fig. 4. Evolution of mean generational distance, mean error ratio, mean spacing, mean spread and mean hypervolume over the number of function evaluations for the

second test function (number of repetitions = 10).

E.I. Ducheyne et al. / Applied Soft Computing 8 (2008) 337–349344
different (p = 0.000) from the average approach, but later on

Tukey’s posthoc-test indicates that all groups are significantly

different from each other.

3.4. Discontinuous functions

3.4.1. Visual comparison

The inheritance techniques are unable to solve the

discontinuous problem (Fig. 5). Both inheritance techniques

yield the same result but their Pareto fronts approximate the

Pareto-optimal front in a linear way. This is particularly
pronounced in the case of the average fitness inheritance. The

solutions are also unevenly distributed along the fronts.

Apparently, the noise resulting from the linear interpolation

of the fitness values of the offspring results in a high disturbance

of the genetic algorithm.

3.4.2. Generational distance

The generational distance is similar for all approaches for

the complete evolution (Fig. 6). Between the two inheritance

techniques, however, there is no visual difference. The data was

statistically analysed using a One Way ANOVA. All p-values

Table 5

p-Values for normality, homoscedasticity and One Way ANOVA for different

numbers of function evaluations for generational distance for the second test

function (number of repetitions = 10) (non, no inheritance; average, average

inheritance; proportional, proportional inheritance)

Evaluations Group Shapiro–Wilk Levene One Way ANOVA

600 Non 0.344 0.098 0.210

Average 0.491

Proportional 0.511

700 Non 0.668 0.111 0.050

Average 0.761

Proportional 0.487

800 Non 0.779 0.183 0.018

Average 0.989

Proportional 0.595

1600 Non 0.135 0.497 0.001

Average 0.499

Proportional 0.357

Table 7

p-Values for normality, homoscedasticity and One Way ANOVA for different

numbers of function evaluations for spread for the second test function (non, no

inheritance; average, average inheritance; proportional, proportional inheri-

tance)

Evaluations Group Shapiro–Wilk Levene One Way ANOVA

4,000 Non 0.247 0.422 0.000

Average 0.527

Proportional 0.728

6,000 Non 0.175 0.645 0.013

Average 0.468

Proportional 0.696

10,000 Non 0.764 0.626 0.0000

Average 0.424

Proportional 0.448

Table 8

p-Values for normality, homoscedasticity and One Way ANOVA for different

numbers of function evaluations for hypervolume for the second test function

(number of repetitions = 10) (non, no inheritance; average, average inheritance;

proportional, proportional inheritance)

Evaluations Group Shapiro–Wilk Levene One Way ANOVA

1400 Non 0.692 0.269 0.054

Average 0.349

Proportional 0.871

1800 Non 0.951 0.324 0.000

Average 0.378

Proportional 0.560

E.I. Ducheyne et al. / Applied Soft Computing 8 (2008) 337–349 345
for the relevant tests of normality (Shapiro–Wilk), homo-

scedasticity (Levene’s test) and One Way ANOVA are listed in

Table 9. Early in the evolution, there is not much difference

between the approaches, but according to Tukey’s posthoc-test

this difference becomes significant among all groups after

10,000 function evaluations.

3.4.3. Error ratio

The error ratio of the two inheritance techniques is much

worse than for the non-inheritance approach (Fig. 6).

Whereas the error ratio drops after 10,000 evaluations for

the regular genetic algorithm, the error ratio for the

average inheritance approach stays 1 for the complete

duration of the genetic algorithm. The error ratio of the

proportional inheritance technique does decline after 16,000

function evaluations but much less than in the non-

inheritance case.

3.4.4. Spacing and spread

As was the case with the two other functions, the spacing

and spread are not affected by the inheritance. The spacing of

the average inheritance is again much lower than that of the
Table 6

p-Values for normality, homoscedasticity and Kruskal–Wallis for different

numbers of function evaluations for spacing for the second test function

(number of repetitions = 10) (non, no inheritance; average, average inheritance;

proportional, proportional inheritance)

Evaluations Group Shapiro–Wilk Levene Kruskal–Wallis

4,800 Non 0.010 0.151 0.021

Average 0.655

Proportional 0.438

8,000 Non 0.010 0.288 0.003

Average 0.203

Proportional 0.073

16,000 Non 0.010 0.632 0.012

Average 0.648

Proportional 0.048
others. From Fig. 6 can be concluded that once more the

points from the average inheritance are well distributed, but

that proportional inheritance shows a higher degree of

scatter.

This is confirmed by the spread measure: the spread

measures for the three approaches are similar and the values for
Fig. 5. The overall Pareto front for test function 3. On the x-axis F1 = f2, on the

y-axis F2 = h2 and on the z-axis F3 = g2.

Table 9

p-Values for normality, homoscedasticity and One Way ANOVA for different numbers of function evaluations for generational distance for the third test function

(number of repetitions = 10) (non, no inheritance; average, average inheritance; proportional, proportional inheritance)

Evaluations Group Shapiro–Wilk Levene One Way ANOVA

10,000 Non; average; proportional 0.348; 0.828; 0.516 0.846 0.000

E.I. Ducheyne et al. / Applied Soft Computing 8 (2008) 337–349346
the average technique are now in the range of the other two

techniques (Fig. 6). However, because the distance to the

extreme points is taken into account, this compensates for the

low values of the spacing measure.
Fig. 6. Evolution of mean generational distance, mean error ratio, mean spacing, mea

third test function (number of repetitions = 10).
3.4.5. Hypervolume

Finally the hypervolume measure confirms the findings for

the error ratio and the generational distance (Fig. 6): this value

is lower for the inheritance techniques than for the standard
n spread and mean hypervolume over the number of function evaluations for the

Table 10

p-Values for normality, homoscedasticity and One Way ANOVA for different

numbers of function evaluations for hypervolume for the third test function

(number of repetitions = 10) (non, no inheritance; average, average inheritance;

proportional, proportional inheritance)

Evaluations Group Shapiro–Wilk Levene One Way ANOVA

2700 Non 0.485 0.068 0.040

Average 0.491

Proportional 0.444

Fig. 7. Attainment surfaces for the harvest scheduling problem for non-

inheritance and proportional inheritance approaches.

E.I. Ducheyne et al. / Applied Soft Computing 8 (2008) 337–349 347
genetic algorithm. Up until 2700 function evaluations this

difference is not significant between the three groups (Table

10). After 2700 there is a difference between the non-

inheritance and the two inheritance approaches, but these two

do not differ from each other until the very end of the

evolution.

4. Fitness inheritance for harvest scheduling

4.1. Introduction

As a final case study, fitness inheritance is used to speed

up the optimisation process for a bi-objective harvest

scheduling problem. Forest managers need to schedule

management treatments over a planning horizon. Often the

objective is to maximise the net present value, while

minimising at the same time the deviations between the

different cutting periods. The net present value can be

calculated as

f ¼ Vt

ð1þ iÞt
; (13)

where Vt is the revenue obtained at period t and i is the

discount rate. The timber production is calculated from

production forecast tables produced by the British Forestry

Commission [13]. This produced timber is then multiplied by

current prices [1]. As the production tables of the trees do not

change over time, it is possible to combine these two sources

in order to obtain the current value for the timber retrieved

from the forest.

The second objective for this harvest scheduling problem is

the minimisation of the deviations in timber volume per cutting

period. This is needed to ensure an even flow of timber volume

towards the wood processing industry over the complete

planning horizon. According to the formulation of Johnson and

Scheurman [15] for a Model I harvest scheduling problem, this

can be written as

g ¼
XM

j¼1

V j � V̄; (14)

where M is the number of time periods, Vj the total volume (m3)

cut in period j and V̄ is the average volume cut over all cutting

periods.

This planning horizon is 80 years for this case study and a

forest management unit can be scheduled for harvesting every

10 years. As a management unit can receive only one set of
management actions for the complete duration of the

planning horizon, a chromosome with the same number of

genes as the number of management units is a sufficient

representation for this problem. After analysis it followed

that an integer representation is the best coding for this type

of forest management problem. As this problem is convex,

fitness inheritance should be a feasible approach. A

confounding factor might be the inseparability of the

problem. Ducheyne et al. [8] showed that the building

blocks had a size up to 5.

4.2. Parameter settings

The population size is set to 100, the number of generations

without fitness inheritance to 200, and with proportional

inheritance to 400. Average inheritance was not tested because

from the test functions followed that its performance was either

similar to or worse than that of proportional inheritance. One-

point crossover is used with a probability of 0.8 and uniform

mutation with a probability of 0.01. Binary tournament

selection was used and the crowding distance operator ensured

sharing.

4.3. Results and discussion

From Fig. 7 follows that after the same number of function

evaluations, the attainment surface from the inheritance

approach equals that of the non-inheritance approach. This is

confirmed by calculating the hypervolume measure. The data is

normally distributed (p = 0.99 > 0.05) and homoscedastic

(p = 0.685). From the Student’s t-test test statistic follows

that there is no significant difference between the two groups

(p = 0.209).

The performance of the inheritance technique is thus very

similar to that of the non-inheritance approach. It must be noted

that still the same number of function evaluations are needed to

ensure this performance and that there is no real gain of using

the fitness inheritance.

E.I. Ducheyne et al. / Applied Soft Computing 8 (2008) 337–349348
5. Conclusions

Between the two fitness inheritance techniques there is little

difference in performance. The generational distance, error

ratio and hypervolume are not always significantly different,

and in most cases very close to the values of the non-inheritance

approach. Spacing and spread are even better for the average

fitness inheritance than for the standard genetic algorithm.

Overall fitness inheritance can speed up the optimisation

process for convex functions while maintaining the same

performance as the regular genetic algorithm.

It can be concluded that for functions with a non-convex

Pareto front, after a few fitness evaluations, the inheritance

techniques converge slower to the Pareto-optimal front than the

non-inheritance approach. Maintaining spread or spacing is

again not affected by the inheritance. This means that for

functions with a non-convex Pareto front, inheritance

techniques are less suitable to use.

As was the case for functions with a non-convex Pareto

front, the inheritance techniques are not useful for discontin-

uous functions. Their performance in terms of generational

distance, error ratio and hypervolume is significantly worse

than for the non-inheritance approach over the complete

evolution. Again, spacing and spread are not affected by the

fitness inheritance.

Fitness inheritance efficiency enhancement techniques can

be used in order to reduce the number of fitness evaluations

provided that the Pareto front is convex and continuous. If

the surface is not convex, the fitness inheritance strategies

fail to reach the Pareto-optimal front. As to the inheritance

strategy, it is safer to choose the proportional approach,

because in most cases the proportional inheritance performs

better in terms of generational distance, error ratio and

hypervolume.

If real-world practitioners want to use fitness inheritance, it

is advisable to check beforehand what the nature (convex, non-

convex, . . .) of the Pareto front is. This can be achieved by

solving the problem with a classical multiple objective GA for a

low number of generations and then switch to fitness

inheritance techniques if there is sufficient indication that

the Pareto front is convex and continuous. They should also

consider other techniques for speeding up the optimisation

process. These might include local fitness recalculation, where

the fitness value of the individuals is updated from the value

from the parents by recalculating only where the children differ

from the parents.

The performance of the inheritance approach is similar to

that of the standard genetic algorithm for the real-world

application. However, this should be relativised because in

reality the same number of function evaluations are necessary

to obtain the same Pareto front. Nevertheless despite the fact

that this problem is non-separable, fitness inheritance had no

negative impact on the performance.

Other techniques such as meta-modelling or response

surface approximation may be better suited to solve this kind

of problems because they can approximate the objective

function non-linearly [11].
References

[1] Anon., Gemiddelde Prijzen van Hout op Stam, Houthandel en nijverheid,

pp. 5–5, 2000.

[2] T. Bäck, Z. Michalewicz, Test landscapes, in: T. Back, D. Fogel, Z.

Michalewicz (Eds.), Handbook of Evolutionary Computation, Oxford

University Press, Oxford, 1997, pp. 14–20.

[3] J. Chen, D.E. Goldberg, S. Ho, K. Sastry, Fitness inheritance in multi-

objective optimization, in: W.B. Langdon, et al. (Eds.), GECCO 2002:

Proceedings of the Genetic and Evolutionary Computation Conference,

July 9–13, Morgan Kaufmann Publishers, New York, 2002 , pp. 319–

326.

[4] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,

Wiley and Sons, Chichester, UK, 2001.

[5] K. Deb, S. Agrawal, A. Pratab, T. Meyarivan, A Fast Elitist Non-

dominated Sorting Genetic Algorithm for Multi-Objective Optimization:

NSGA-II, KanGAL Report 200001, Indian Institute of Technology,

Kanpur, India, 2000.

[6] K. Deb, S. Jain, Running Performance Metrics for Evolutionary Multi-

objective Optimization, Technical Report 200004, Kanpur Genetic Algo-

rithms Laboratory, 2000.

[7] E. Ducheyne, B. De Baets, R.R. De Wulf, Is fitness inheritance useful for

real-world applications? Lect. Notes Comput. Sci. 2632 (2003) 31–42.

[8] E. Ducheyne, B. De Baets, R.R. De Wulf, Probabilistic models for linkage

learning in forest management, in: Y. Jin (Ed.), Knowledge Incorporation

in Evolutionary Computation, Springer, Berlin, 2005, pp. 177–195.

[9] E. Ducheyne, R.R. De Wulf, B. De Baets, Single versus multiple objective

genetic algorithms for solving the even-flow forest management problem,

Forest Ecol. Manage. 201 (2–3) (2004) 259–273.

[10] E. Ducheyne, R.R. De Wulf, B. De Baets, A spatial approach to forest-

management optimization: linking GIS and multiple objective genetic

algorithms, Int. J. GIS 20 (8) (2006) 917–928.

[11] M. Emmerich, A. Giotis, M. Özdemir, T. Bäck, K. Giannakoglu, Meta-

model-assisted evolution strategies, in: J.J. Merelo Guervós, et al. (Eds.),

Parallel Problem Solving From NaturePPSN VII, Springer, Berlin, 2002,

pp. 361–370.

[12] J.J. Grefenstette, J.M. Fitzpatrick, Genetic Search with Approximate

Function Evaluations, in: J.J. Grefenstette (Ed.), Proceedings of an Inter-

national Conference on Genetic Algorithms and Their Applications,

Lawrence Erlbaum, Hillsdale, USA, 1985, pp. 112–120.

[13] G.J. Hamilton, J.M. Christie, Forest management tables, in: Forestry

Commission Booklet No. 34., Her Majesty’s Stationery Office, London,

UK, 1971.

[14] L. While, P. Hingston, L. Barone, S. Huband, A faster algorithm for

calculating hypervolume, IEEE Trans. Evolut. Comput. 10 (1) (2006) 29–

38.

[15] K.N. Johnson, H.L. Scheurman, Techniques for prescribing optimal

timber harvest and investment under different objectives—discussion

and synthesis, Forest Sci. Monogr. 18 (31) (1977).

[16] J. Knowles, D. Corne, On metrics for comparing nondominated sets,

Proceedings of the 2002 Congress on Evolutionary Computation Con-

ference, IEEE, 2002, pp. 711–716.

[17] K. Sastry, D.E. Goldberg, M. Pelikan, Don’t evaluate, inherit, in: L.

Spector, et al. (Eds.), GECCO 2001: Proceedings of the Genetic and

Evolutionary Computation Conference, Morgan Kaufmann Publishers,

San Francisco, 2001, pp. 551–558.

[18] J.R. Schott, Fault tolerant design using single and multi-criteria genetic

algorithms, Master’s Thesis, Massachusetss Institute of Technology,

1995.

[19] R.E. Smith, B.A. Dike, S.A. Stegmann, Fitness inheritance in genetic

algorithms, in: Proceedings of the 1995 ACM Symposium on Applied

Computing, February 26–28, ACM, Nashville, TN, USA, 1995.

[20] D.A. Van Veldhuizen, G.B. Lamont, Multiobjective evolutionary algo-

rithm test suites, in: J. Carroll, et al. (Eds.), Proceedings of the 1999 ACM

Symposium on Applied Computing, ACM, 1999, pp. 351–357.

[21] E. Zitzler, Evolutionary algorithms for multiobjective optimization: meth-

ods and applications, PhD Thesis, Institut für Technische Informatik und

Kommunikation-snetze, 1999.

E.I. Ducheyne et al. / Applied Soft Computing 8 (2008) 337–349 349
[22] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary

algorithms: empirical results, Evolut. Comput. 8 (2) (2000) 173–195.

[23] E. Zitzler, M. Laumanns, L. Thiele, C.M. Foneseca, V. Grunert da

Fonseca, Why quality assessment of multiobjective optimizers is difficult,

in: W.B. Langdon, et al. (Eds.), GECCO 2002: Proceedings of the Genetic
and Evolutionary Computation Conference, July 9–13, Morgan Kaufmann

Publishers, New York, 2002, pp. 666–674.

[24] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V. Grunert da Fonseca,

Performance assessment of multiobjective optimisers: an analysis and

review, IEEE Trans. Evolut. Comput. 7 (2) (2003) 117–132.

	Fitness inheritance in multiple objective evolutionary algorithms: �A test bench and real-world evaluation
	Theoretical foundations of fitness inheritance
	Single objective fitness inheritance
	Multiple objective fitness inheritance

	Test functions and performance measures
	Test functions
	Performance measures
	Testing closeness
	Testing spread among the non-dominated points
	Testing the extent of the obtained Pareto-front
	Combining spread, extent and closeness

	Performance analysis

	Solving the test functions with fitness inheritance
	Parameter settings
	Convex functions
	Visual comparison
	Generational distance
	Error ratio
	Spacing and spread
	Hypervolume

	Functions with a non-convex Pareto front
	Visual comparison
	Generational distance
	Error ratio
	Spacing and spread
	Hypervolume

	Discontinuous functions
	Visual comparison
	Generational distance
	Error ratio
	Spacing and spread
	Hypervolume

	Fitness inheritance for harvest scheduling
	Introduction
	Parameter settings
	Results and discussion

	Conclusions
	References

