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Human T-lymphotropic virus 1: recent knowledge about an 
ancient infection
Kristien Verdonck, Elsa González, Sonia Van Dooren, Anne-Mieke Vandamme, Guido Vanham, Eduardo Gotuzzo

Human T-lymphotropic virus 1 (HTLV-1) has infected human beings for thousands of years, but knowledge about the 
infection and its pathogenesis is only recently emerging. The virus can be transmitted from mother to child, through 
sexual contact, and through contaminated blood products. There are areas in Japan, sub-Saharan Africa, the Caribbean, 
and South America where more than 1% of the general population is infected. Although the majority of HTLV-1 
carriers remain asymptomatic, the virus is associated with severe diseases that can be subdivided into three categories: 
neoplastic diseases (adult T-cell leukaemia/lymphoma), infl ammatory syndromes (HTLV-1-associated myelopathy/
tropical spastic paraparesis and uveitis among others), and opportunistic infections (including Strongyloides stercoralis 
hyperinfection and others). The understanding of the interaction between virus and host response has improved 
markedly, but there are still no clear surrogate markers for prognosis and there are few treatment options. 

Introduction
In 1979, the human T-lymphotropic virus 1 (HTLV-1) was 
isolated from a patient with a T-cell malignancy.1 This 
discovery was the fi rst formal proof that human 
retroviruses exist and suggested their aetiological role in 
human cancer, a hypothesis that had been proposed 
decades before.2 It is estimated that 10 to 20 million 
people worldwide are infected with HTLV-1,3 and although 
the majority of infected people remain asymptomatic, 
the virus is associated with exceptionally severe diseases, 
such as adult T-cell leukaemia/lymphoma (ATL) and an 
infl ammatory disease of the central nervous system 
called HTLV-1-associated myelopathy/tropical spastic 
paraparesis (HAM/TSP).4,5 The growing insight into the 
pathogenesis of these diseases sheds light upon the 
functioning of human T cells, the major target of HTLV-1. 
Nonetheless, it is not yet fully understood why some 
infected individuals develop associated diseases whereas 
others do not.6 

HTLV-1 and T cells
HTLV-1 is a type C virus belonging to the family of 
Retroviridae and classifi ed into the genus of 
Deltaretrovirus. It is a round-shaped, enveloped virus of 
approximately 100 nm diameter (fi gure 1A).7 The virion is 
surrounded by a proteolipid envelope bilayer of host cell 
membrane origin, equipped with viral transmembrane 
and surface proteins. The inner envelope contains the 
matrix layer, which helps to organise the viral components 
at the inner cell membrane. The icosahedral capsid 
protects the viral RNA and the functional protease, 
reverse transcriptase, and integrase, which are organised 
together with the nucleocapsid into a ribonucleoprotein 
complex.7 

The genome of HTLV-1 is a positive, single-stranded 
RNA. During the life cycle of the virus, this single-
stranded RNA is converted to double-stranded DNA and 
inserted into the DNA of a human host cell. This inserted 
form of a retrovirus is referred to as provirus.2 Like other 
human retroviruses, HTLV-1 causes a lifelong infection. 
The virus preferentially infects CD4+ T cells, but CD8+ 

T cells are also an important reservoir for the virus.9 
Evidence suggests that the ubiquitous vertebrate glucose 
transporter could act as a host-cell receptor for HTLV-1.10 

The HTLV-1 genome encodes typical retroviral 
structural, functional, and envelope proteins, HTLV-1-
specifi c regulatory proteins, and a minus-strand gene 
protein designated HTLV-1 bZIP-factor (fi gure 1B, 
table 1).11,12 The virus makes optimum use of its genome 
by using multiple RNA ribosomal frame shifts and 
transcript splicing patterns, including diff erential start 
sites for protein translation (fi gure 1C). 

By contrast with HIV, HTLV-1 predominantly exists as a 
cell-associated provirus and is transmitted as such.6 
Naturally infected T cells hardly produce any virus and 
the plasma viral load is, therefore, undetectable. However, 
the virus particle-associated RNA can infect new cells 
through a viral synapse.13 It is presumed that early during 
infection, most new HTLV-1-infected cells are produced 
by cell-to-cell spread, resulting in a polyclonal infection 
of both CD4+ and CD8+ T cells. In later stages, when 
equilibrium between viral replication and immune 
response is reached, HTLV-1 mainly multiplies by clonal 
expansion dependent on mitosis of host cells.14 

An immunological hallmark of HTLV-1-infected 
individuals is the spontaneous proliferation of peripheral 
blood mononuclear cells in vitro—ie, without exogenous 
antigens or stimulants, but driven by the HTLV-1-encoded 
Tax protein.15 This mitosis-dependent survival strategy of 
HTLV-1 contributes to its genomic stability, because it 
relies on cellular DNA polymerase, which by contrast 
with viral reverse transcriptase, displays effi  cient proof 
reading.16 Phylogenetic analyses of the proviral DNA 
contribute to the knowledge about origin and evolution 
of HTLV-1 and might be useful in anthropological 
studies.17

The predominantly proviral lifestyle of HTLV-1 is an 
indirect argument for a relatively eff ective immune 
response. Class I-restricted CD8+ T cells control the virus 
by lysis of infected T cells that express viral peptides as a 
consequence of viral transcription (fi gure 2).6 The 
equilibrium between this cytotoxic T-lymphocyte control 
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and the proviral replication results in a steady-state 
provirus load that varies little over time in any given 
individual.18,19  

However, there seems to be a trade-off  between this 
benefi cial cytotoxic T-lymphocyte response and the 
simultaneous production of infl ammatory cytokines, 
which can result in infl ammatory pathology.20 Because 
the virus has a low genetic variability, it can be 
postulated that the outcome of HTLV-1 infection will 
depend on intrinsic host factors—ie, the relative 

effi  ciency of the purely lytic response, refl ected in 
production of perforin and granzyme, versus the 
tendency to produce infl ammatory cytokines such as 
interferon-γ and tumour necrosis factor (TNF) α 
(fi gure 2).

Diagnosis of HTLV-1 infection
Serological screening for the presence of HTLV antibodies 
can either be done by an enzyme immunoassay (EIA) or 
by a particle agglutination test. The fi rst generation EIAs 
were based on viral lysate and frequently resulted in 
false-positive reactions.21 Second generation EIAs using 
recombinant proteins and/or synthetic HTLV-1 peptides 
perform better, but confi rmatory testing is still 
recommended to eliminate false-positive reactions and to 
discriminate between the diff erent HTLV types.22   

There are several serology-based confi rmation tests, 
including homebrew indirect immunofl uorescence 
assays (IFA), and commercially available western blot 
and line immunoassays.23,24 One problem with these tests 
is the occurrence of indeterminate results, when samples 
react to one or more of the antigens incorporated in the 
test but lack the typical HTLV profi le—ie, reactivity to at 
least Gag and Env.25 Another problem is that the 
confi rmatory tests cannot always distinguish between 
HTLV-1 and HTLV-2.26

In these indeterminate or untypable cases, PCR can 
provide the defi nite diagnosis of infection.27,28 Several 
generic and/or type-specifi c HTLV PCRs have been 
developed; they are often based on the most conserved 
region of the genome, tax. In PCR and real-time PCR 
assays, proviral HTLV-1 DNA is amplifi ed to a detectable 
level. Real-time PCR has the advantage that the provirus 
can be quantifi ed. The provirus load is expressed as the 
number of HTLV-1 DNA copies per fi xed number of 
peripheral blood mononuclear cells.29,30 It is the most 
frequently used marker for prognosis and disease 
progression in infected patients.19,31,32 

Transmission
HTLV-1 can be transmitted from mother to child through 
breastfeeding. The risk of infection in children of 
seropositive mothers correlates with the provirus load in 
breastmilk, the concordance of HLA class I type between 
mother and child, and the duration of breastfeeding.33,34 
In several reports from endemic populations, the overall 
rate of vertical transmission ranged between 15% and 
25%, and in subgroups of children who received 
prolonged breastfeeding, these rates were even higher.35–39 
In Japan, screening of pregnant women and avoiding 
breastfeeding in those infected has reduced the 
prevalence of HTLV-1.40,41 Intrauterine and peripartum 
transmission of HTLV-1 occurs in less than 5% of 
children of infected mothers.37,40,42 

HTLV-1 is present in genital secretions of infected 
people and can be transmitted through sexual 
intercourse.43 In a cohort of 30 discordant couples 
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Figure 1: HTLV-1 virus structure and genome
(A) Schematic cross-section through a mature HTLV-1 particle depicting its 
structure and composition. Reproduced with permission from reference 8 
(Van Dooren, 2005). (B) Genomic organisation of HTLV-1. (C) Viral messengers. 
The primary full-length messenger RNA encodes a large Gag-PR-Pol precursor 
polyprotein, a singly spliced messenger encodes Env, and doubly spliced 
messengers encode the regulatory proteins. Viral genes encoded by the plus and 
minus strand RNA are shown respectively above and below the scale bar of the 
genomic length. HBZ=HTLV-1 bZIP-factor. LTR=long terminal repeat.
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followed for 10 years, the incidence of HTLV-1 infection 
in the previously uninfected partner was estimated to be 
0·9 per 100 person-years (95% CI 0·1–3·3).44 Cross-
sectional studies have suggested higher transmission 
effi  ciency from men to women than from women to 

men.26,45 However, prospective studies show that this 
diff erence is less important than previously thought.44,46 
Condom use was shown to protect against infection 
among Peruvian sex workers.47,48

Transfusion of contaminated cellular blood components 
results in seroconversion in more than 40% of recipients.49 
In many countries, candidate blood donors are screened 
for HTLV-1 antibodies. In Japan, this intervention has 
decreased the number of new infections in the general 
population.50 Sharing of contaminated needles and 
syringes by injecting drug users is another way of 
parenteral transmission. HTLV-1 is frequent among 
injecting drug users in Brazil and in New York, whereas 
HTLV-2 is more prevalent in other North American and 
European injecting drug users.51–53

Origin, spread, and prevalence
To estimate the global prevalence of HTLV-1 on the basis 
of published reports is diffi  cult because there are few 
population-based studies. HTLV-1 prevalence estimates 
are usually based on serological screening of blood donors, 
pregnant women, and other selected population groups. 
Studying the prevalence in healthy donors might 
underestimate the population prevalence.54 Data from 
pregnant women may better refl ect the general population, 
although reports from endemic areas suggest that HTLV-1 
seroprevalence increases with age and is higher in women 
than in men.26,55,56 A second obstacle for the comparison of 
prevalence studies is that diff erent diagnostic tests and 
criteria for interpretation have been used. In a US study, a 
change in diagnostic strategy led to a false impression of 
increase in HTLV prevalence in blood donors.57 

Africa
HTLV-1 infection is now present in the whole world but 
Africa is the only continent where all diff erent primate 
T-lymphotropic viruses (PTLV) have been found: HTLV 
types 1 to 4 and their simian counterparts simian 
T-lymphotropic viruses (STLV) types 1 to 3. Therefore, it 
is assumed that the common ancestor of all PTLV 
originated in Africa. Phylogenetic studies also point to 
central Africa as the cradle of PTLV.58,59 

The African/cosmopolitan part of the PTLV-1 phyloge-
netic tree is characterised by short branches and a star-
like topology (fi gure 3A). This suggests an explosive 
spread of the virus on the African continent, giving rise 
to all African PTLV-1 clusters. It is estimated that the 
spread of PTLV-1 in Africa occurred 27 300 years ago (95% 
CI 19 100–35 500).60 STLV-1 strains are interspersed within 
and between the fi ve central African human subtypes 
(HTLV-1b, HTLV-1d, HTLV-1e, HTLV-1f, and HTLV-1g), 
suggesting frequently occurring interspecies transmissions 
between primates and human beings.58 Only HTLV-1 
subtype a, the subtype that became cosmopolitan, has no 
simian strains clustering within the clade (fi gure 3B). 
These HTLV-1 subtypes appear to have diverged between 
21 100 and 5300 years ago.60

HTLV-1 proteins and glycoproteins Functions

Envelope proteins (encoded by env)

Surface glycoprotein (gp46) Binds to host cell receptor

Transmembrane protein (gp21) Anchors surface glycoproteins to virus 

Structural proteins (encoded by gag)

Matrix layer (p19) Organises viral components at the inner cell membrane

Capsid (p24) Protects viral RNA and proteins (core shell)

Nucleocapsid (p15) Nucleic acid-binding protein 

Functional proteins (encoded by pol)

Protease (p14) Cleaves polyproteins into functional components

Reverse transcriptase (p95) Converts single-stranded RNA to double-stranded DNA

Integrase Facilitates insertion of provirus into host cell DNA 

Regulatory proteins

Tax Activates transcription provirus
Activates transcription host genes

Rex Modulates transport of viral RNA

p12I Role in viral replication and T-cell activation

p30II Modulates transcription

p13II Targets mitochondria

HTLV-1 bZIP-factor Downregulates viral transcription

Table 1: Functions of HTLV-1 proteins and glycoproteins

Presentation viral antigens

Granzyme
Perforin

Interferon-γ
TNFα

Integration proviral DNA

Lytic response

Infection

Production cytokines

Transcription proviral DNA

Mitosis CD4+ cell

Receptor Class I MHC

T-cell receptor

HTLV-1 provirus

1

2

3

a b

c

CD4+ T cell CD8+ T cell

Figure 2: The interaction between an infected CD4+ T cell and a CD8+ T cell indicating how HTLV-1 infection 
can lead to diff erent outcomes
(1) An effi  cient lytic response controls the provirus load and protects people from disease. (2) The production of 
infl ammatory factors can eventually lead to HTLV-1-associated myelopathy/tropical spastic paraparesis and other 
infl ammatory diseases, and (3) the proliferation of infected cells can result in adult T-cell leukaemia/lymphoma. 
The relative effi  ciency of (1) versus (2) may depend on (a) the relative affi  nity of diff erent human leucocyte 
antigen molecules for crucial HTLV-1 peptides; (b) the effi  ciency of their interaction with the T-cell receptor; and 
(c) a genetic tendency to produce more infl ammatory than lytic factors. TNF=tumour necrosis factor.
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In most African countries, the actual HTLV-1 prevalence 
cannot be estimated because of lack of information. 
However, data from Guinea-Bissau, Togo, and south 
Cameroon suggest that at least in these countries, more 
than 1% of the general population is infected 
(fi gure 4).61–63

Asia 
In southern Japan, the area in the world with the highest 
HTLV-1 prevalence, more than 10% of the general 
population is infected.55,56,64 Several research groups have 
postulated the presence of HTLV-1a in Japan since ancient 
times, a view supported by the detection of HTLV-1 
infection in the Japanese Ainu and Ryukyuans, both 
considered to be direct descendants of the oldest 
migrating Mongoloid populations.65 However, an early 
report on the origin of HTLV-1, together with phylogenetic 
analyses and molecular clock studies suggest that 
HTLV-1a has been introduced into Japan much more 
recently as a result of Portuguese navigation adventures 
and the African slave trade.17,66–68 

In Taiwan, in Iran, and in Fujian, a Chinese province 
near Taiwan, there are regions with a seroprevalence of 
0·1–1%.69–71 The infection is probably rare in the rest of 
Asia, although there are vast areas from where 
information is lacking (fi gure 4). 

Oceania
HTLV-1 is endemic in Papua New Guinea, the Solomon 
Islands, and Vanuatu: more than 1% of the aboriginal 
population is infected with HTLV-1 subtype c.72–74  The 
Asian/Oceanian part of the PTLV-1 phylogenetic tree 
presents deeply branching monophyletic host-specifi c 
clades, suggesting a long, host species-specifi c evolution 
(fi gure 3A).75 The only human strains in this part of the 
tree belong to the HTLV-1 subtype c.72 It has been 
suggested that HTLV-1c arose through the fi rst settlers of 
Melanesia and Australia who probably acquired the virus 
from STLV-1-infected simians in Indonesia along their 
migratory pathway (fi gure 4).76,77

America
The presence of HTLV-1 in aboriginal populations from 
Kamchatka at one side of the Bering Strait and in native 
Eskimos and Amerindians on the other side suggests an 
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Figure 3: Puzzle maximum likelihood tree of the long terminal repeat region 
of 79 representative PTLV-1 strains
(A) Unrooted version of the tree to demonstrate short branches and star-like 
topology in the African/cosmopolitan part versus deeply branching host-specifi c 
clades in the Asian/Austronesian part of the tree. (B) PTLV-1 long terminal 
repeat phylogram. The STLV-1 host species are represented by a symbol after the 
viral strain name. Strains with no symbols are HTLV-1 strains. The values on the 
left side of the nodes represent puzzling support values of 70% or more. The 
clear separation between Asian/Austronesian and African/cosmopolitan strains 
is demonstrated. The cosmopolitan HTLV-1a subtype and Melanesian HTLV-1c 
subtype are indicated together with the central African HTLV-1b, HTLV-1d, 
HTLV-1e, and HTLV-1f subtype clades, interspersed with STLV-1 strains. 
Reproduced with permission from reference 8 (Van Dooren, 2005). 
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ancient introduction of HTLV-1a into the New World 
through Mongoloid migrations. 78–81 However, the HTLV-1a 
phylogeny demonstrates dispersal of African strains all 
over and clustering of Amerindian strains within and not 
at the origin of the cosmopolitan HTLV-1a subgroup 
clusters. Together with molecular clock estimates, these 
observations are consistent with the dissemination of 
HTLV-1 to the New World through the African slave 
trade.68 The report of the presence of HTLV-1 DNA in an 
Andean mummy and its subsequent statistical parsimony 
phylogeny reopened the debate on a possible ancient 
dissemination.82–84 However, the sequence data remain 
controversial, as argued by several research groups, as 
well as the unmatched and ambiguous mutation-order 
dependent positioning of the clonal HTLV-1 mummy 
sequences.84–86

Introduced in ancient or post-Colombian times, the 
infection is now endemic in several population groups. 
In Jamaica, Martinique, Guyana, French Guyana, 
Colombia, and the north of Brazil, HTLV-1 is particularly 

frequent among descendants of African slaves, whereas 
in other areas such as Peru and the north of Argentina it 
is the indigenous people who present the highest 
prevalences.87–93 Except for some foci among native 
Americans, HTLV-1 is rare in the rest of Central and 
North America (fi gure 4).57,92 

Europe
Following the increased human mobility in the past fi ve 
centuries, HTLV-1a infection has also reached Europe. In 
most western European countries, HTLV-1 is still 
uncommon in the general population.54 The infection has 
been reported in specifi c population groups, such as 
immigrants from endemic areas, sex workers, and 
injecting drug users.94,95 HTLV-1 could be more frequent in 
eastern Europe. A prevalence of 0·6% was found among 
blood donors in Romania and there are several case reports 
of Romanian patients with HTLV-1-associated ATL.96,97

It is not clear why after spreading over the whole 
world, HTLV-1 became and remained highly prevalent 
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Figure 4: Origin, spread, and prevalence of HTLV-1
Origin and spread hypothesis based on phylogenetic and anthropological data. PTLV originated in African primates and migrated to Asia where it evolved into 
STLV-1. This early STLV-1 lineage spread to India, Japan, Indonesia, and back to Africa (arrows 1). It crossed the simian–human barrier in Indonesian human beings 
who migrated to Melanesia, resulting in the HTLV-1c subtype (arrows 2). In Africa, STLV-1 evolved through several interspecies transmissions into HTLV-1a, HTLV-1b, 
and HTLV-1d, HTLV-1e, and HTLV-1f (arrows 3). Because of the slave trade and increased mobility, HTLV-1a was introduced in the New World, Japan, the middle east, 
and north Africa (arrows 4). Colours indicate current prevalence estimates based on population surveys and on studies in pregnant women and blood donors. In 
some countries, HTLV-1 infection is limited to certain population groups or areas. Adapted from reference 68 (Van Dooren et al, 1998).
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in some populations and not in others. Many factors 
associated with HTLV-1 infection in prevalence studies 
such as prolonged breastfeeding, transfusion history, 
unprotected sex, many lifetime sexual partners, presence 
of other sexually transmitted diseases, and history of 
drug use correspond to the known modes of HTLV-1 
transmission.93 Other observations, however, suggest 
the presence of yet unknown biological or social 
cofactors infl uencing HTLV-1 transmission.53 The most 
important arguments in favour of this hypothesis are 
that most HTLV-1-endemic areas are in the tropics, the 
virus clusters among neighbours, and the prevalence 
declines in subsequent generations migrating from 
endemic to non-endemic areas.98 Moreover, although 
HTLV-1 and HIV-1 have similar modes of transmission, 
the viruses do not necessarily spread in the same way. 
In some areas, HTLV-1 prevalence tends to decrease 
over time while HIV-1 can be on the rise in the same 
population.89

HTLV-1-associated diseases
Most people infected with HTLV-1 remain asymptomatic 
throughout life. How many people eventually develop 
any of the associated diseases depends on several factors, 
including age and the route of infection.99 Additionally, 
the incidence of HTLV-1-associated diseases is not 
uniform across geographical areas.100 

Among HTLV-1 carriers, the lifetime risk of developing 
HAM/TSP ranges from between 0·3% and 4%.101 For 
ATL, this risk is calculated as 1% to 5% and for HTLV-1-
associated diseases in general, including ATL, HAM/
TSP, uveitis, polymyositis, and arthropathy, the lifetime 
risk may be close to 10%.102–104  

The aetiological role of HTLV-1 in ATL, HAM/TSP, and 
uveitis is well established.53 HTLV-1 has also been reported 
in association with infective dermatitis, Sjögren’s 
syndrome, thyroiditis, arthropathy, polymyositis, 
polyneuropathy, T-lymphocyte alveolitis, cutaneous 
T-cell lymphoma, and certain infections such as 
strongyloidiasis, scabies, leprosy, and tuberculosis. For 
some of these diseases, the association with HTLV-1 is 
proposed on the basis of epidemiological data, whereas 
in others there are also biological arguments (table 2 and 
webappendix). Even if the underlying physiopathological 
mechanisms are not yet fully understood, we propose to 
group the associated diseases into three categories: 
malignant diseases, infl ammatory diseases, and 
infectious complications (table 2 and webappendix). We 
have classifi ed infective dermatitis as an infectious 
complication, although an infl ammatory component also 
appears to be involved in this syndrome. 

The outcome of HTLV-1 infection depends on a complex 
interaction between the virus and host genetic and 
immunological factors.127 In this context, it is worth 
mentioning that certain HTLV-1 complications seem to 
aff ect the same patients, suggesting that these diseases 
have common pathogenic mechanisms. Examples of 

complications occurring together are: HAM/TSP with 
other infl ammatory diseases (including Sjögren’s 
syndrome, arthritis, alveolitis, and uveitis), uveitis with 
thyroiditis, strongyloidiasis with ATL, and infective 
dermatitis with ATL and with HAM/TSP.106,111–113,128–130

Adult T-cell leukaemia/lymphoma
History
In the 1970s, clinicians in Japan felt that the haematological 
malignancies they observed did not fi t the pattern 
described in the literature of that time.4 They diagnosed, 
for instance, few cases of chronic lymphocytic leukaemia 
on one hand and many acute, aggressive T-cell 
malignancies on the other, particularly among patients 
from southwestern Japan. The impression of an 
autochthonous pathology led to the description of a 
clinical entity: adult T-cell leukaemia/lymphoma.4,115

Pathogenesis
ATL is a malignancy of CD4+ post-thymic T cells in 
which the HTLV-1 provirus is integrated. Unlike animal 
retroviruses causing neoplasm, HTLV-1 does not contain 
a transforming oncogene. In the case of HTLV-1, it is 
the regulatory protein Tax that induces abnormal growth 
of infected T cells through several pathways.15 By binding 
to certain transcription factors and transcriptional 
cofactors, Tax promotes the transcription of its own 
proviral genome, but it also promotes transcription of 

Epidemiological evidence Biological evidence

Case reports 
or series

Case control 
studies

Cohort 
studies

HTLV-1 in 
lesions

Animal 
model

Infl ammatory syndromes

HAM/TSP Yes Yes Yes Yes Yes

Uveitis Yes Yes .. Yes Yes

Arthropathy Yes Yes .. Yes Yes

Sjögren’s syndrome Yes .. .. Yes Yes

Polymyositis Yes .. .. Yes Yes

Thyroiditis Yes .. .. Yes ..

Pneumopathy Yes .. .. .. ..

T lymphocyte alveolitis Yes .. .. .. ..

Malignant diseases

ATL Yes Yes Yes Yes Yes

Cutaneous T-cell lymphoma Yes .. .. Yes ..

Infectious complications

Strongyloides stercoralis Yes Yes Yes .. ..

Crusted scabies Yes .. .. .. ..

Infective dermatitis Yes .. .. .. ..

Tuberculosis Yes Yes .. .. ..

Leprosy Yes Yes .. .. ..

HAM/TSP=HTLV-1-associated myelopathy/tropical spastic paraparesis. ATL=adult T-cell leukaemia/lymphoma. 
..=unknown. References 1, 5, 55, 103, 105–126. See webappendix for supplemental list of references, and an indication 
of which studies relate to each association and basis for association. 

Table 2: Diseases reported in association with HTLV-1 and basis for this association

See Online for webappendix
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cellular genes, including cytokine (eg, interleukin-2), 
cytokine receptor (interleukin-2Rα), and anti-apoptotic 
genes. By binding to other protein complexes, Tax 
represses the transcription of genes that are important 
in negative control of the cell cycle, in activation of 
apoptosis, and in DNA repair. Tax also binds and inhibits 
proteins directly involved in tumour suppression and 
DNA repair. Finally, Tax causes cells to bypass normal 
cell-cycle checkpoints.15

The net eff ect of all these activities of Tax is that T cells 
are rushed into and through the mitotic phase without 
checking for chromosomal abnormalities. Genetic 
damage that would normally be repaired accumulates 
and apoptotic cell death does not occur even in cells with 
severely damaged DNA. In these circumstances, T cells 
can accumulate DNA mutations, resulting in 
transformation and monoclonal outgrowth of a truly 
malignant cell. In addition to these genetic changes, 
epigenetic changes such as DNA methylation may have 
an important role in leukaemogenesis.131

Despite the fact that these phenomena occur in all 
infected people, only a minority develop ATL. It is 
possible that the development of ATL is determined 
mainly by chance, particularly in view of the fi nding that 
HTLV infection results in chromosomal instability.132 
However, as yet unknown factors could be involved in the 
pathogenesis. This view is supported by the fi nding that 
the occurrence of ATL appears to vary according to 
geographical location.

Epidemiology
Although ATL has been described in all HTLV-1-endemic 
areas, there are intriguing disparities. First, ATL seems 
to be more common in southwestern Japan than 
anywhere else.133 It is not clear whether this corresponds 
to an actual diff erence in incidence or whether it only 
refl ects access to health care and consistency of 
registration. Second, there is a diff erence in the mean 
age at diagnosis of ATL: 40 to 50 years in Central and 
South America, and 60 years in Japan.103,116,133,134

Several studies suggest that ATL develops mostly in 
individuals infected early in life through breastfeeding. 
Infection of immature thymocytes at young age might 
increase the risk of later transformation into malignant 
cells.99 

Clinical characteristics and diagnosis
There are several types of HTLV-1-induced ATL: acute, 
lymphomatous, chronic, and smouldering (table 3).135 A 
fi fth category, primary cutaneous tumoral ATL, has been 
proposed recently.134 Chronic ATL has a relatively good 
prognosis, even without treatment. Chronic and 
smouldering forms can, however, evolve to acute ATL, 
which has a poor prognosis: the median survival time 
after diagnosis is only 6 months.133 

Almost all patients with ATL present with 
lymphadenopathy and 50% have hepatosplenomegaly. 
Skin lesions are also common; they can precede or 
coincide with the lymphadenopathy and/or splenomegaly. 
ATL can also aff ect the lungs, gastrointestinal tract, and 
central nervous system; involvement of other organs is 
uncommon.135 

Hypercalcaemia is an important complication: it 
occurs in up to 70% of patients and is often accompanied 
by lytic bone lesions. A possible explanation is that ATL 
cells induce the diff erentiation of haematopoetic 
precursor cells into osteoclasts. These osteoclasts 
accelerate bone resorption, resulting in hypercalcaemia.131 
A parathyroid hormone-related peptide is frequently 
increased in ATL patients and could be involved.131,136 ATL 
patients are immunosuppressed and opportunistic 
infections, such as Pneumocystis jirovecii pneumonia, 
cryptococcus meningitis, and disseminated herpes 
zoster are, therefore, frequent.137 Liver dysfunction is 
another complication.  

With respect to laboratory tests, peripheral blood 
smears show fl ower cells—ie, pleomorphic, atypical 
lymphoid cells with basophilic cytoplasm and convoluted 
nuclei (fi gure 5), in which the integrated HTLV-1 provirus 
can be detected.138 During the leukaemic phase, the white 
blood cell count may increase to hundreds of 
thousands. 

The diagnosis of ATL is usually based on morphological 
analysis. Flower cells are indicators of acute or lymphoma-
type ATL. This must be confi rmed by clonal integration 
of HTLV-1 provirus in the host genome. The predominant 
immunological phenotype of neoplastic cells is helper 

Acute Lymphomatous Chronic Smouldering

General characteristics

Proportion of ATL cases 55% 20% 20% 5%

Median survival time 6 months 10 months 24 months ..

4-year survival 5% 6% 27% 66%

Diagnostic criteria

Anti-HTLV antibody Yes Yes Yes Yes

Lymphocyte count ND <4000 per mL >4000 per mL <4000 per mL

Lactate dehydrogenase ND ND <2xNUL <1·5xNUL

Calcium, corrected ND ND <5·5 mEq/L <5·5 mEq/L

Abnormal T lymphocytes ≥5%* <1% ≥5%* ≥5%*

Flower cells Yes No Occasionally Occasionally

Tumour lesion

Skin and/or lung ND ND ND If abnormal lymphocyte <5%*

Lymph node ND Yes ND No

Liver or spleen ND ND ND No

CNS ND ND No No

Bone ND ND No No

Ascites ND ND No No

Pleural eff usion ND ND No No

Gastrointestinal tract ND ND No No

ND=not defi nitory. NUL=normal upper limit. CNS=central nervous system. ..=not reported. *If abnormal 
T lymphocytes less than 5%, histologically proven tumour lesion required for diagnosis. Adapted from reference 135 
(Shimoyama, 1991).

Table 3: Comparison of adult T-cell leukaemia/lymphoma (ATL) subtypes
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T cell, CD3+, CD4+, L-selectin+, CD25+, CD45RA+, 
HLA-DR+, CD29–, and CD45RO– in peripheral blood, or 
CD3+, CD4+, L-selectin+, CD29+, CD45RO+, HLA-DR+, 
and CD45RA– in the skin and lymph nodes.138

Factors associated with a poor prognosis include 
high expression of the Ki67 antigen, and high serum 
levels of calcium, parathyroid hormone-related protein, 
lactate dehydrogenase, thymidine kinase, soluble 
interleukin-2 receptor, β2-microglobulin, and neuron-
specifi c enolase. 138

Treatment
Many strategies have been evaluated for the treatment of 
ATL, and the following therapies appear to improve the 
prognosis compared with conventional chemotherapy: 
interferon-α with zidovudine, intensive chemotherapy 
(as in LSG-15 with granulocyte colony-stimulating factor 
support), and allogenic haematopoietic stem cell 
transplantation.131,138 Nevertheless, the median survival of 
patients with acute, lymphomatous, and progressing 
chronic ATL remained low: less than 1 year in most 
reports.131,133 Novel approaches include histone 
deacetylation inhibitors, monoclonal antibodies, and 
proteasome inhibitors, but their added value remains to 
be established.131

Infl ammatory syndromes
HTLV-1-associated myelopathy/tropical spastic 
paraparesis
History
Long before HTLV-1 was discovered, neurologists had 
reported the frequent occurrence of a myelopathy of 
unknown origin in tropical areas. The fi rst descriptions of 
this syndrome go back to the 19th century.139 The association 
with HTLV-1 was recognised independently in the 
Caribbean and in Japan in 1985–1986.5,140 Soon thereafter, it 
was agreed to refer to this disease as HTLV-1-associated 
myelopathy/tropical spastic paraparesis.  

Pathogenesis
The main pathological feature of HAM/TSP is a chronic 
infl ammation of the white and grey matter of the spinal 
cord. Mononuclear cells, mainly T cells, cause perivascular 
cuffi  ng and infi ltrate the parenchyma. Later in the 
disease, the pattern becomes less cellular and more 
atrophic. The damage occurs mostly in the white matter 
of the lower thoracic spinal cord, which is consistent with 
the spastic paraparesis in the lower limbs.141 

The lesions in the central nervous system could be a 
consequence of a genuine anti-HTLV-1 reaction. By com-
parison with asymptomatic carriers, HAM/TSP patients 
have a higher provirus load, a higher production of 
proinfl ammatory cytokines such as interferon-γ and TNFα, 
and a higher frequency of HTLV-1-specifi c CD8+ 
T cells.32,142–144 Additionally, in a Japanese population, 
polymorphism in the TNFα promoter and the chemokine 
gene SDF-1α infl uenced the risk of HAM/TSP.145 Altogether, 
these fi ndings indicate that a high HTLV-1 burden and an 
exaggerated proinfl ammatory cellular immune response, 
partly based on the host genetic constitution, are involved 
in the pathogenesis of HAM/TSP.  

More direct evidence of an immunopathological 
reaction in the central nervous system itself includes the 
observation of infected T cells within the spinal cord 
lesions and the accumulation of Tax-specifi c CD8+ T cells 
in the cerebrospinal fl uid.146,147 There is no evidence that 
HTLV-1 directly infects neuronal cells, astrocytes, or 
microglia. Therefore, the damage to these cells could be 
interpreted as a bystander eff ect. Nevertheless, the 
question remains why HTLV-1-infected and anti-HTLV-1 
T cells accumulate at these sites. 

There is some evidence that autoimmunity—ie, cross-
reactivity between HTLV-1 antigens and tissue antigens—
could be involved in the pathogenesis. Patients with 
HAM/TSP appear to develop antibodies to human 
neurons but not to systemic organs, although this fi nding 
is contentious.148 Moreover, monoclonal and patients’ 
polyclonal antibodies show cross-reactivity between an 
epitope of Tax and neuronal heterogeneous 
ribonucleoprotein A1, a phenomenon that has been 
associated with genuine autoimmune diseases such as 
systemic lupus erythematosus.149 Additionally, 
autoantibodies against other nuclear and perinuclear 
human brain proteins cross-reacting with diff erent HTLV-1 
epitopes have been found in the serum of HAM/TSP 
patients.150 It seems unlikely, however, that these 
autoantibodies play a primary role in tissue damage, 
because of the intracellular localisation of their targets. 
Since infl ammatory T cells, rather than antibodies, seem 
to be involved in the tissue damage, the question is whether 
autoreactivity at the level of the T-cell receptor is present.

Epidemiology
More women than men develop HAM/TSP and this 
diff erence is not entirely attributable to the higher 
prevalence of HTLV-1 among women in endemic 

Figure 5: Image of a fl ower cell
Flower cells are atypical lymphoid cells with basophilic cytoplasm and convoluted 
nuclei, commonly seen in the blood smears of HTLV-1-infected people.
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areas.101,151,152 Therefore, it has been suggested that the risk 
of HAM/TSP could be higher if HTLV-1 infection is 
acquired during adulthood, and more specifi cally through 
sexual transmission.105 HAM/TSP is considered 
uncommon in children, although case reports have 
increased in recent years.130,153 In a report of seven children 
with infective dermatitis and HAM/TSP, the progression 
of neurological symptoms was remarkably rapid.130

Clinical characteristics and diagnosis
In most cases, HAM/TSP presents as a gradually 
appearing, symmetrical paraparesis of the lower limbs 
with signs of pyramidal tract involvement, which 
progresses slowly and without remissions (fi gure 6).5,130,151,154 
Bladder disorders are very common and represent an 
important cause of functional impairment among HAM/
TSP patients.130,151,155,156 Dyssynergy of the detrusor 
sphincter during micturition leads to disorders in bladder 
emptying and results in repeated urinary infections.157 In 
many patients, urinary and sexual problems are the fi rst 
symptoms of the disease. Back pain, constipation, and 
sensory symptoms and signs are also frequent.151,152,154

Cerebrospinal fl uid examination may show mild 
lymphocytic pleocytosis and a mild-to-moderate increase 
of protein. Antibodies against HTLV-1 are present and 
the cerebrospinal fl uid/serum antibody index is 
elevated.152 The HTLV-1 provirus can be demonstrated in 
cerebrospinal fl uid cells of HAM/TSP patients.158

The defi nite diagnosis of HAM/TSP requires the 
demonstration of HTLV-1 infection and the exclusion of 
other causes of myelopathy, such as spinal cord 
compression, paraneoplastic syndromes, parasitic 

myelopathy, B12 and folate defi ciency, multiple sclerosis, 
and amyotrophic lateral sclerosis, among others. A WHO 
working group established diagnostic guidelines (panel) 
in 1989; an actualisation of these guidelines is in 
preparation.152 Repeatedly reported atypical clinical 
presentations of HAM/TSP include syndromes with 
cerebellar, encephalitis-like, lateral amyotrophic-like, and 
Parkinson-like features. It is, therefore, justifi ed to 
consider HAM/TSP in the diff erential diagnosis of 
atypical neurological conditions of unknown origin, 
especially in areas where HTLV-1 infection is frequent. 
Obviously, HAM/TSP in HTLV-1-infected patients should 
be carefully distinguished from other neurological 
disorders where the HTLV-1 infection is just incidental.

The HTLV-1 provirus load in peripheral blood 
mononuclear cells has been proposed as a marker of 
HAM/TSP risk and progression. It is estimated that the 
risk of disease increases exponentially with the logarithm 
of the provirus load once the provirus load exceeds 1 per 
100 peripheral blood mononuclear cells.159 Additionally, 
patients with rapidly progressive HAM/TSP appear to 
have a higher provirus load than those with slowly 
progressive disease.32 The provirus load in cerebrospinal 
fl uid cells is also associated with HAM/TSP.158 The 
HTLV-1 mRNA load is another marker associated with 
disease severity in HAM/TSP patients.160

Treatment
Therapies directed at modulating the immune response 
have been considered for the treatment of HAM/TSP. 
Other therapies aim at decreasing the HTLV-1 viral 
antigen burden, which in turn should lead to a reduction 
in HTLV-1-specifi c cytotoxic lymphocyte activity. 

There are confl icting reports on the eff ect of 
corticosteroids.161 Interferon-α has shown to be of short-
term benefi t to some patients in a randomised study.162 

Interferon-β1a, evaluated in an open trial, reduced the 
HTLV-1 mRNA load; but the HTLV-1 provirus load 
remained unchanged and there was only a slight 
improvement in motor function.163

The combination of two nucleoside analogues 
(zidovudine and lamivudine) has been evaluated in a 
randomised, double-blind, placebo-controlled study 
including 16 HAM/TSP patients. After up to 12 months of 
follow-up, there were no signifi cant changes in provirus 
load and no clinical improvement was observed.164 

Most of the treatments for HAM/TSP proposed to date 
have been evaluated in small and/or uncontrolled studies, 
and among patients with rather long disease duration 
and varying disease severity. There is an urgent need for 
new, controlled studies of both anti-infl ammatory and 
antiviral agents. 164

Arthropathy
An association between HTLV-1 and arthropathy was fi rst 
proposed in 1989.107 Since then, reports have been 
contradictory. In some series, the majority of rheumatoid 

Figure 6: Husband and wife, both with HAM/TSP, stand in their shop on the 
outskirts of Lima, Peru



http://infection.thelancet.com   Vol 7   April 2007 275

Review

arthritis cases were found to be HTLV-1 negative.165,166 By 
contrast, in a Japanese cross-sectional study and a 
US cohort study, the prevalence and the incidence of 
arthritis were found to be higher among HTLV-1-infected 
patients than among uninfected individuals.108,109 Another 
argument in favour of an association is that Tax transgenic 
mice develop an arthritis that is pathologically similar to 
human rheumatoid arthritis.110,167 Tax has been shown to 
stimulate the proliferation of synovial cells in vitro.168 
Hence, Tax, released by HTLV-1-infected cells in vivo, 
could have a part in the pathogenesis of arthropathy.

HTLV-1-associated arthropathy resembles rheumatoid 
arthritis, with synovial proliferation and a positive 
rheumatoid factor.169 Conversely, in ATL patients, 
polyarthritis with a negative rheumatoid factor has been 
described.170 The treatment of HTLV-1-associated 
arthropathy is empiric and symptomatic; usually, a 
combination of anti-infl ammatory and analgesic drugs is 
used.

Uveitis
Reports from Japan have shown that HTLV-1 infection is 
more frequent in patients with uveitis of unknown origin 
than in the general population.114 HTLV-1-associated 
uveitis is twice as frequent in women as in men and 
although the syndrome mostly aff ects adults, it has been 
described in children too. 

At onset, patients generally complain of blurred vision 
with fl oaters. Iritis and vitreous opacities of variable size 
and shape are almost always present, often in association 
with retinal vasculitis and, occasionally, with retinal 
exudates and haemorrhages. In more than half of cases, 
HTLV-1-associated uveitis is an intermediate uveitis. 
Bilateral is as frequent as unilateral infl ammation.171,172 The 
prognosis of HTLV-1-associated uveitis is good: 
spontaneously, the disease resolves within weeks and 
recovery is even faster with topical or systemic corticosteroid 
treatment. However, sight-threatening complications can 
occur, including retinochoroidal degeneration, glaucoma, 
and corticosteroid-induced cataracts. Unfortunately, more 
than 90% of cases recur within 3 years; the mean interval 
between episodes is 16 months.173

Infectious complications
Strongyloidiasis
Strongyloides stercoralis is an intestinal nematode of 
tropical regions that can replicate within the human 
host, an unusual characteristic among helminths. In 
the normal strongyloides cycle, fi lariform larvae from 
the soil penetrate the human skin and migrate to the 
lungs. The larvae ascend the bronchi and are swallowed. 
Adult females stay and lay eggs in the intestinal mucosa. 
Rhabditiform larvae hatch, migrate to the intestinal 
lumen and pass with the faeces into soil. An autoinfection 
cycle starts when rhabditiform larvae develop into 
infectious fi lariform larvae within the intestine instead 
of in soil. These fi lariform larvae penetrate the colon or 

the anal skin and then continue their cycle within the 
same host.

Most people with strongyloidiasis have mild diarrhoea 
or vague abdominal complaints, or remain asymp-
tomatic. In immunocompromised hosts, S stercoralis 
may produce a disseminated infection, in which 
invasive, fi lariform larvae move to the lung, liver, kidney, 
and central nervous system. The larvae can carry bacteria 
from the colon and cause sepsis and meningitis. This 
disseminated form of strongyloidiasis, also referred to 
as hyperinfection, has been described in patients with 
malignant tumours, severe malnutrition, corticosteroid 
or cytotoxic therapy, renal transplantation, and HTLV-1 
infection.119,120

By contrast with patients infected with S stercoralis 
alone, those with HTLV-1 and strongyloidiasis have a 

Panel: Guidelines for the diagnosis of HTLV-1-associated myelopathy/tropical spastic 
paraparesis (HAM/TSP)

Age and sex
Mostly sporadic, sometimes familial. Adult females predominate, occasionally in childhood

Onset
Usually insidious

Main neurological manifestations
Chronic spastic paraparesis, which usually progresses slowly, but may remain static after 
initial progression
Weakness of lower limbs, more marked proximally
Bladder disturbance usually an early feature; constipation usually occurs later; impotence 
and decreased libido are common
Sensory symptoms are more prominent than objective physical signs
Low lumbar pain with radiation to the legs is common
Vibration sense is frequently impaired
Hyperrefl exia of lower limbs, often with clonus and Babinski’s sign
Hyperrefl exia of upper limbs; positive Hoff man’s and Tromner’s signs are frequent; 
weakness may be absent
Exaggerated jaw jerk in some patients

Less frequent neurological fi ndings
Cerebellar signs, optic atrophy, deafness, nystagmus, other cranial nerve defi cits, hand 
tremor, absent or depressed ankle jerk

Other neurological manifestations that may be associated with HAM/TSP
Muscular atrophy, fasciculations, polymyositis, peripheral neuropathy, polyradiculopathy, 
cranial neuropathy, meningitis, encephalopathy

Systemic non-neurologic manifestations that may be associated with HAM/TSP
Pulmonary alveolitis, uveitis, Sjögren’s syndrome, arthropathy, vasculitis, ichthyosis, 
cryoglobulinaemia, monoclonal gammopathy, adult T-cell leukaemia/lymphoma

Laboratory criteria
Presence of HTLV-1 antibodies or antigens in blood and cerebrospinal fl uid
Cerebrospinal fl uid may show mild lymphocytic pleocytosis
Lobulated lymphocytes may be present in blood or cerebrospinal fl uid, or both
Mild to moderate increase of protein may be present in cerebrospinal fl uid
Viral isolation from blood and/or cerebrospinal fl uid when possible 

Adapted from reference 152 (WHO, 1989).
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stronger Th1 response (high levels of interferon-γ) and a 
weaker Th2 response (low levels of interleukin-4, 
interleukin-5, interleukin-13, IgE, and eosinophils). The 
decrease in interleukin-4 and IgE reduces the effi  cacy of 
mast cell degranulation and the lowered interleukin-5 
impairs eosinophil recruitment and killing activity 
against the parasite. As a result, the rate of parasite 
killing decreases and the rate of autoinfection 
increases.174

There is now epidemiological evidence that HTLV-1 is 
not only associated with S stercoralis hyperinfection but 
also with strongyloidiasis in general and with relapse after 
treatment with ivermectin, tiabendazole, and 
albendazole.117,120,175 On the basis of a Japanese cohort, it is 
estimated that the risk to develop strongyloidiasis is twice 
as high among HTLV-1-infected people as among healthy 
controls.120

Tuberculosis
Several cross-sectional studies have found a high 
prevalence of HTLV-1 among tuberculosis patients and a 
high prevalence of tuberculosis among HTLV-1-infected 
people.55,118 Additionally, HTLV-1 carriers have a reduced 
delayed type hypersensitivity response to Mycobacterium 

tuberculosis purifi ed protein derivative, suggesting that 
HTLV-1, like HIV, could increase the risk of developing 
tuberculosis.176 A strong argument in favour of this 
hypothesis comes from a Brazilian case-control study in 
which HTLV-1 was three times more frequent among 
tuberculosis patients than among hospital controls.124 
Furthermore, the fi nding of an association between 
HTLV-1 infection and mortality among tuberculosis 
patients suggests that HTLV-1 infection might increase 
the severity of the tuberculosis.123 

Whereas the suppression of protective Th2 responses by 
HTLV-1 is an acceptable explanation for its association with 
strongyloidiasis, this cannot be extrapolated to tuberculosis, 
where Th1 responses are protective. A generalised immune 
suppression is a tentative, but probably incomplete 
explanation—ie, it remains puzzling why some, but not all 
infections known to be prevalent in otherwise immuno-
suppressed individuals are associated with HTLV-1.   

Crusted scabies
In immunosuppressed patients, Sarcoptes scabiei can 
produce massive infections, causing extensive, crusted 
lesions, located mainly in pressure areas (fi gure 7). This 
phenomenon has been described in relation to 
corticosteroid therapy, malignancies, Down’s syndrome, 
diabetes, HIV, and HTLV-1 infection, among others. In a 
Peruvian study 16 out of 23 patients with crusted scabies 
were HTLV-1 positive and none had HIV.122 In a Brazilian 
study including 91 cases of scabies, crusted or severe 
forms were strongly associated with HTLV-1 and, to a 
lesser degree, with HIV infection.121 

Infective dermatitis
Infective dermatitis was described in Jamaica long before 
the discovery of HTLV-1.177 There are markedly less reports 
of this disease from Japan than from other HTLV-1-
endemic regions. Infective dermatitis is a chronic, 
relapsing syndrome that usually aff ects young children. 
It presents as a generalised papular rash, with exudates 
and crusting on the scalp, ear, eyelid margins, paranasal 
skin, neck, axilla, and groin (fi gure 8). Watery nasal 
discharge, lymphadenopathy, and colonisation with 
β-haemolytic streptococci or Staphylococcus aureus, or 
both, are frequent.126,178 The histological characteristics of 
infective dermatitis are not distinctive and therefore the 
diff erential diagnosis with other types of eczema and 
with seborrhoeic and atopic dermatitis is based on clinical 
criteria.129,178 Response to treatment with antibiotics and 
mild topical steroids is usually good and immediate, but 
symptoms tend to recur rapidly after suspension of the 
antibiotics.125

Figure 7: HTLV-1-infected patient with scabies
Papules and vesicles in the interdigital spaces extend toward the dorsum of the 
hand

A B

Figure 8: Boy with infective dermatitis
(A) At a moment of exacerbation of the disease. The patient has a generalised 
rash with exudates in the face and neck and lesions on the ears, eyelid 
margins, and paranasal skin. There is crusting on the scalp and the boy has a 
watery nasal discharge. (B) At a moment when the disease is better under 
control with antibiotics.
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Up to one-third of patients with infective derma-
titis present complications and comorbidities, such as 
severe bacterial superinfection, corneal opacities, 
glomerulonephritis, chronic bronchiectasis, lympho cytic 
interstitial pneumonitis, scabies and helmin thiasis, 
anaemia, and elevated white blood cell counts with 
lympho cytosis and atypical lymphocytes.129,178,179

Conclusion
A quarter of a century after its fi rst description, HTLV-1 is 
still a poorly recognised infection. Many carriers remain 
asymptomatic, which contributes to the silent 
transmission of the virus. Since several associated 
diseases can also occur in uninfected people, the role of 
underlying HTLV-1 often passes unnoticed. Even though 
important knowledge about the pathogenesis is 
emerging, there are no clear surrogate markers for 
follow-up and the proviral lifestyle of HTLV-1 complicates 
the development of antiretroviral drugs. The treatment of 
associated diseases is mostly restricted to symptomatic 
relief. Prevention of transmission remains fundamental 
in HTLV-1 control, but safe alternatives to breastfeeding, 
the major route of transmission worldwide, are diffi  cult 
to provide in many resource-limited endemic areas.  
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