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Summary Protective immunity against Mycobacterium tuberculosis (MTB) in animal models is based on cell-
mediated immunity (CMI), involving bi-directional interactions between T cells and cells of the monocyte/macrophage
(MO/MA) lineage. Key factors include MO-derived interleukin (IL)-12 and tumor necrosis factor (TNF)-o as well as T
cell derived IL-2 and interferon (IFN)-y. These cytokines appear particularly crucial in the induction of MA-mediated
elimination of mycobacteria. Several lines of evidence indicate that similar mechanisms are operating in humans.

During active pulmonary tuberculosis (PTB), signs of both immune depression and immune activation are
concomitantly present. Decreased tuberculin skin test reactivity in vivo and deficient IFN-y production by MTB-
stimulated mononuclear cells in vitro are observed. On the other hand, the serum levels of several cytokines,
including TNF, and other inflammatory mediators are increased and circulating MO and T cell show phenotypic and
functional evidence of in vivo activation.

In this review, we will discuss the evidence for three models, which could explain this apparent paradox: 1.
Stimulation of the T cell-suppressive function from MO/MA; 2. Intrinsic T cell refractoriness, possibly associated with
tendency to apoptosis (programmed cell death), and 3. Compartmentalization and redistribution of immune responses
to the site of disease.

The opportunistic behavior of MTB during human immunodeficiency virus (HIV) infection can be explained by
suppression of type-1 responses at the level of antigen-presenting cells, CD4 T cells and effector macrophages. The
ominous prognostic significance of intercurrent PTB during HIV infection seems primarily due to prolonged activation
of HIV replication in macrophages.

Supportive immune therapy during PTB could aim at correcting the type-1 deficiency either by IFN-y inducers
(e.g. IL-12, IL-18) or by neutralizing the suppressive cytokines transforming growth factor § (TGF-B) and IL-10.
Alternatively, inflammatory over-activity could be reduced by neutralizing TNF. Finally, anti-apoptotic therapies
(e.g. [L-15) might be considered.
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1. IMMUNE DEFENSE AND IMMUNOPATHOLOGY
IN PULMONARY TUBERCULOSIS

Primary pulmonary infection with Mycobacterium tuber-
culosis (MTB) induces long-term protective immunity in
the large majority.of infected subjects. Life-time risk on
reactivation of latent infection is less than 5% in immuno-
competent individuals. According to the prevailing para-
digm, protection relies on type 1 cell-mediated immunity
(CMI), involving interactions between MTB-specific CD4
and CD8 T lymphocytes and cells of the monocyte-
macrophage (MO/MA) lineage.'”

MO/MA, particularly the alveolar macrophages (AM),
are the natural hosts for MTB. They have a limited intrin-
sic capacity to reduce the growth of mycobacteria but
additional ‘acquired’ immune activation by CD4 T cells is
necessary to control the infection.* To this end, MTB anti-
gens (Ag) have to be presented to specific CD4+ T cells by
professional antigen-presenting cells (APC), including
dendritic cells (DC) and other cells of the MO/MA lineage.
The CD4 T cells are induced to secrete interleukin-2 (IL-
2), the main T cell growth factor, and interferon-gamma
(IFN-y), an important activating signal for MO/MA. The
production of IFN-y is regulated by APC-derived factors,
including stimulatory IL-12 and suppressive IL-10 and
transforming growth factor beta (TGF-B).>”

Acquired deficiency of type-1 responses, e.g. during
human immunodeficiency virus (HIV) infection, drama-
tically increases the chances of clinical reactivation of
MTB infection®'° Genetic deficiencies in the IL-12,
IFN~, IFN~y receptor axis result in increased suscept-
ibility to mycobacterial diseases, not only in knock-out
mouse models, but also in rare cases of human gene
defects.'t"!

Mechanisms, distinct from, but related to classical MO-
CD4 T interactions, contribute to MTB control as well. In
murine models, cell-subset depletion experiments in vivo
showed that CD4 and CD8 of receptor(+) as well as v6
receptor(+) T cells all have a role in protective immunity
in the order CD4 >CD8 > v T cells. Interferon-y is already
secreted by MTB-activated 5 cells before aff T cells come
into play. Both activated CD4 and CD8 T cells and 8
T cells can eliminate infected MO/MA by their potent
cytotoxic activity.”*™'” In addition, there is evidence that
double (af) negative T cells, other than 8 cells, may
recognize non-protein mycobacterial antigens through
mechanisms involving presentation via CD1.'

Mycobacterial products induce the production of
tumor necrosis factor-o. (INF-o) by MO/MA. The latter
cytokine has a complex role in the pathogenesis of tuber-
culosis (TB) as it can either increase phagocytic and
killing capacities of MO/MA or promote the growth of
MTB inside the cells, depending on the presence of other
factors, including IFN-y, 1,25 di-hydroxy vitamin D and
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iron.>"” TNF-o appears to be required, together with IEN-
v, for the formation of granulomas, which limit the spread
of the infection. This has been clearly demonstrated in
the murine model of bacille Calmette-Guérin (BCG) infec-
tion, in which animals pretreated with neutralizing anti-
body to TNF-o fail to contain the infection and develop
progressive BCG disease.”

Whether TNF-o has a similar role in humans is less
clear: TNF was shown to increase the killing capacity of
the MO/MA, when they were infected with high doses of
an avirulent MTB strain (H37Ra),” but this was not con-
firmed in the same in vitro model, with low doses of a
more virulent strain (H37Rv) (Silver R: personal commu-
nication). In mice, TNF and IFN activation of MO/MA
involves the generation of the bactericidal NO, whereas
the role of this mediator in human immunocytes remains
uncertain.

Excessive TNF-o. production and/or increased sensitivi-
ty to TNF-a are involved in expression of many of the
local and systemic toxicities evident in TB, including
necrotizing (caseous) reactions, which promote the repli-
cation and dissemination of the bacteria. TNF is also an
important mediator of systemic inflammation, clinically
manifested by fever and wasting. Depending on the set-
ting, TNF-o. thus promotes containment or dissemination
of MTB and can contribute to both immune protection
and pathology 2

The role of type-2 responses and humoral immunity in
MTB infections is generally considered to be marginal
Reports on in vivo or in vitro production of type-2 cyto-
kines (IL-4, IL-5 and IL-13) during PTB are inconsistent.
Although some of these cytokines theoretically could
have a suppressive effect on type-1 immunity or increase
the sensitivity to TNF-a, thus promoting immune path-
ology, there is no convincing evidence that these
mechanisms are really operative during PTB2*#
Although MTB-reactive antibodies are abundantly pro-
duced during infection, they do not seem to contribute
to protection.>*

In a first approach, the immune reactions during PTB
can be viewed as a balance between protective type-1
responses on one hand and inflammatory pathological
reactions on the other. In the following paragraphs,
we will highlight the importance of excessive immune
activation, monocyte-mediated suppression and T cell
apoptosis in the pathogenesis of PTB.

2. THE PARADOX OF ANERGY AND IMMUNE
ACTIVATION IN PTB

Active PTB is characterized by signs of systemic immune
activation, including polyclonal hyper-gammaglobulin-
emia, increased serum levels of TNF and elevated expres-
sion of HLA-DR on circulating T cells.**° Although T
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cells and monocytes show evidence of non-specific acti-
vation, there is simultaneous evidence of antigen-specific
hyporesponsiveness. Up to 20-25% of patients with
newly diagnosed HIV(-) PTB show a negative tuberculin
skin test (anergy). More sensitive measurements of PPD-
induced lymphocyte proliferative responses show reduc-
tion to values of 50% of healthy PPD reactors. Production
of II-2 and IFN-y is even further reduced.3%* These
anomalies are most pronounced in those subjects with
radiologically far advanced disease **7¢

Theoretically, several models can be proposed to
explain the apparent paradox of concomitant activation
and immune depression.

1. the function of antigen-presenting cells (APC) may be
dysregulated: reduced Ag-presentation and/or
enhanced suppression of type 1 responses

2. immune (over)activation during active PTB could
induce T cell refractoriness to stimulation and
predispose to apoptosis (programmed cell death)

3. the most Ag-reactive T cells could be largely
retained at the site of infection and consequently
only less Ag-responsive T cells are recovered from
the periphery (compartmentalization and
redistribution).

The available data discussed in the following sections
suggest evidence that all three of these mechanisms may
be operating during PTB.

3. IMMUNE OVER-ACTIVATION OF MONOCYTES
AND T CELLS DURING PTB (sce table)

3.1. Various alterations in the monocytes from PTB
patients

PTB is characterized by a relative increase in peripheral
monocytes, which is particularly pronounced in subjects
with decreased responses to PPD.*” The circulating MO

Table Characteristics of peripheral monocytes and CD4 T cells in
PTB

Monocytes  CD4T cells
Numbers (in vivo) =or?l =orl
Membrane marker expression
HLA-DR T l
-2 R T =(resting) { (stimulated)
TNF-R 7
B, J
FcyRI and RIll 0
Cytokine profile
Non stimulated (in vivo) TGF-p T IFN-y T and IL-4 T
MTB-Ag stimulated (in vitro)  IL-1,IL-6and IL-2 !
TNF-o. T
IL-10 T IFN-y J.1
Neopterin T
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of PTB patients are functionally and phenotypically
altered.**# They show increased adherence to plastic, an
enhanced hexose monophosphate shunt activity and
increased killing capacity towards Schistosoma and
Listeria infected cells.*

After stimulation in vitro, TB MO produce increased
amounts of several inflammatory cytokines, including
TNF-o, IL-1, IL-6 and IL-8.7*42 Moreover, the membrane
expression and the actual occupancy of TNF receptors is
increased.**** MO/MA from PTB patients presumably also
constitute a major source of the elevated serum levels of
neopterin and, together with other activated immuno-
cytes, they contribute to high circulating B2-microglobu-
lin concentrations, indicating increased cell turnover.?*4
On the other hand, MO from PTB patients spontaneously
secrete the immunosuppressive cytokine TGF-B. Produc-
tion of both TGF-(B, and another anti-inflammatory
cytokine, IL-10, are increased following in vitro stimula-
tion with PPD.*!

Peripheral MO from PTB patients show enhanced mem-
brane expression of FcyR I and FcyR III receptors for 1gG.**
The o chain of the IL-2 receptor (IL-2Ro) is also upregulated
at the cell surface, as well as cytoplasmic IL2-Rf m-RNA
levels.* Expression of HLA-DR, essential in antigen-
presentation to CD4 T cells, is, however, decreased on
freshly isolated MO, especially from those subjects who
show reduced PPD responses in vitro.*” In addition, in a
mouse model of MTB-induced hyporesponsiveness, the
important co-stimulatory B7 molecule was found to be
downregulated.*®

The overall immune profile of peripheral MO from PTB
patients thus includes activation of both inflammatory
and anti-inflammatory systems. Some effector functions
(phagocytosis and bactericidal activity) are enhanced,
whereas lowered HLA-DR and B7 as well as increased
IL-10 and TGF-f might point to reduced APC function or
enhanced suppression (see section 4).

3.2. T cell characteristics in PTB

A relative lymphopenia is seen in a proportion of HIV-
uninfected PTB patients. The distribution of the major
subsets is not significantly altered, although the v T cells
were reported to be relatively expanded in some stud-
ies.!%4%50 PTB patients, without HIV but with low absolute
CD4 T cell counts (and normal CD4/CD8 ratio) tend to
present with a low hematocrit, low body mass index and
more extensive disease.”

More refined phenotypic analysis of peripheral T cells
from a non-selected group of HIV(-) PTB patients showed
enhanced expression of HLA-DR on both CD4 and CD8 T
cells, but normal expression of IL-2Ro. and CD45RO, the
latter being associated with memory cells.” Increased
levels of soluble IL-2Ra, observed in the serum of PTB
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patients, presumably reflect release of the receptor from
MO and/or T cells and correlate with the extent of dis-
ease.”>* Upregulation of IL2-Ra on T cells after in vitro
activation, however, was reported as suboptimal, result-
ing in impaired responsiveness to IL-2 stimulation, either
alone or in combination with MTB-Ag.*® The latter alter-
ations seemed to be restricted to patients with advanced
disease.**

Whereas cytokines are usually not found in peripheral
T cells from controls, IFN-y m-RNA was present in one
third and IL-4 m-RNA in two thirds of TB patients.”® The
message for IL-2 was found to be increased by some,* but
not by other authors.®® Recent studies by Kaplan et al
further indicate increased serum/plasma levels of IFN-y,
IL-1, IL-4 and TNF in newly diagnosed patients. Interes-
tingly, all cytokines fall with treatment, except TNF,
which increases to a maximum at 7-14 days. This tempo-
rary rise in TNF is associated with a transitory clinical
deterioration (personal communication).

Phenotype and function of peripheral T cells from
PTB patients are not typical for a regular antigen stimula-
tion, which induces increased production of IL-2 and up-
regulation of membrane-bound IL-2Ro. and CD45RO,
together with HLA-DR. The aberrant T cell activation
pattern, associated with PTB, might predispose to activa-
tion-induced refractoriness (anergy) and/or activation-
induced programmed cell death (PCD) by apoptosis (see
section 5).

3.3. Mechanisms involved in the aberrant imm_une
pattern during PTB

In vitro, live or killed mycobacteria, their secreted pro-
teins (PPD or 30 kD protein) and/or lipo-arabinomannan
cell wall components can induce the degradation of
IkB and the consequent upregulation of NFKB. Increased
constitutive expression of NFkB was recently found in
MO from PTB patients in vivo.**® The enhanced activity
of nuclear transcription factors, including NFkB, results
in cytokine overproduction by MO, including the
inflammatory TNF-a but also the suppressive IL-10 and
TGF-p.55456%8  Cytokine activity may have secondary
phenotypical and functional effects on MO/MA: TGF-B
can up-regulate the expression of FcyR III* and IFN-y can
increase the expression of FcyR I and the secretion of
neopterin.®>#! FcyR-expressing MO appear to be critical in
MO-mediated suppression of T cells during PTB (see
section 4).

The mechanisms underlying the particular changes
of T cell phenotype and function during PTB are in-
completely understood, but most probably local or
systemic overproduction of cytokines by regulatory
cells, including MO/MA and possibly v§ T cells, are also
involved. In fact infection of MO/MA by other ‘intra-
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cellular parasites’ (e.g. HIV, Trypanosoma cruzi) is asso-
ciated with similar changes in T cells, including enhanced
expression of selected cytokines, upregulation of parti-
cular membrane activation markers and T cell hypo-
responsiveness.®*-%

4. AN UNFAVORABLE BALANCE BETWEEN THE
STIMULATORY AND SUPPRESSIVE FUNCTION
OF ANTIGEN-PRESENTING CELLS IN PTB (sec
Figure)

Although a reduced type 1 response to MTB-Ag is a
consistent finding in the peripheral blood mononuclear
cells from patients with active PTB, the frequency of PPD-
responsive T cells has been reported to be similar in PTB
patients and in healthy tuberculin-reactive controls.5”
Moreover, PBMC responses to non-TB antigens are vari-
ably lowered in the patients, whereas mitogen-induced
proliferation is better preserved.’”?'?*%%% Thus, both
Ag-specific and more generalized T cell dysfunctions are
evident. They could be due to either an intrinsic T cell
defect and/or deficient antigen-presenting function
and/or suppressive mechanisms.

With regard to APC function, quite different effects
have been observed after in vitro infection of dendritic
cells (DC) or MO/MA with mycobacteria. Infection of DC
with BCG or MTB stimulates their maturation, cytokine
production and capacity to efficiently stimulate MTB-
specific CD4 T cells.®" In contrast, infection of MO or
MA reduces their APC function.?”* Depending on the
strain of mycobacterium (BCG or MTB), the infectious
dose and the maturation stage of the MO/MA, the
reduced APC function may be restricted to the infectious
agent itself, extend to PPD or even to non related recall
Ag. Invitro MTB infection of MO, however, did not induce
suppressive activity towards the Ag-specific responses in
co-cultured uninfected PBMC. Although the latter exper-
imental models provide interesting insights, they do not
fully mirror the actual situation during clinical PTB,
where several studies have documented the existence of
active suppression.®®

Earlier studies indicated that non-specific suppression
could be induced by circulating immune complexes,
containing mycobacterial polysaccharides, including D-
arabino-D-galactan.” Lymphocyte-mediated suppression
was also investigated: a significant contribution of classical
CD8+ T suppressor cells could never be demonstrated,
but CD16 (FcyR IM)-positive large granular lymphocytes
were shown to selectively suppress PPD-induced IL-2 pro-
duction by T cells from PTB patients.”s7®

The most striking and repeatedly confirmed obser-
vation is the partial correction of Ag responses after
reducing the proportion of MO within PBMC by their
adherence to plastic, clearly implying that MO act as sup-
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Figure Three models are proposed to explain immune dysfynction
during pulmonary tuberculosis: 1. The function of antigen-presenting
cells (APC), exemplified by monocytes (MO) in the peripheral blood,
is dysregulated by MTB: (a) Their capacity to stimulate CD4 T cells
might be lowered by decreased expression of HLA-DR, which is
responsible for presentation of the antigenic peptides to the T cell
receptor (TCR), and/or by downregulation of costimulatory
mechanisms (e.g. B7 expression); (b) MO from PTB patients act as
suppressor cells by producing high levels of TGF-$ and IL-10. As a
consequence of either mechanism, the cell-mediated (CMI) or type
1 immune response, including IFN-y production, are lower in
patients with active PTB as compared to PPD-reactive healthy
controls. 2. The peripheral T cells from PTB patients are intrinsically
deficient. In vivo over-activation of T cells by MTB results in
refractoriness to additional stimulation and a tendency to apoptosis
or programmed cell death. Both mechanisms might contribute to
lowered CMI upon stimulation with MTB antigens. 3. The level of
potentially protective CMI is different in the various compartments.
The parameters of CMI are consistently higher in the mononuclear
cells from the pleura as compared to those from the peripheral
blood, while those from the lung (broncho-alveolar lavage cells)
might take an intermediate position (but the latter is controversial).
Different levels of CMI can result from redistribution of the most
active T cells to the site of the disease, from differential function of
the local accessory cells (e.g. peripheral, pleural or alveolar MO/MA
and dendritic cells) or from other mechanisms.

pressor cells.?”7°8 A first indirect suppressive mechanism
is the relative over-expression of IL-2Ra. on MO from PTB,
which could reduce the availability of IL-2 to T cells.”!
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Two other possible and extensively studied mechanisms
include the reduced production/ activity of the promi-
nent type-1 stimulatory cytokine IL-12%' and the
enhanced production of the suppressive cytokines TGF-f§
and IL-10.%5788

MTB readily induces bio-active IL-12 in human MO
in vitro®# and there is no evidence that IL-12 production
is deficient in PTB patients: PBMC from TB patients
actually expressed high levels of IL-12 m-RNA in vivo.
Upon mycobacterial stimulation in vitro, MO from
patients produced more biologically active IL-12 than
PBMC from healthy donors.® Addition of IL-12 strongly
increased the IFN-y production in PPD-stimulated PBMC
cultures from both patients and controls, indicating nor-
mal IL-12 receptor function.*# Thus, no gross deficiency
in overall IL-12 production or sensitivity is evident in
PTB. The possibility of more subtle alterations, such as
an imbalance between immunostimulatory and pro-
inflammatory effects of IL-12 during PTB are not
excluded (see also section 8).

As already mentioned in section 3.1, TGF-$ was found
to be significantly more expressed and spontaneously
secreted by MO from TB patients as compared to healthy
contacts.** Moreover, MTB-derived Ag (including PPD
and the 30 Kd Ag) induced much more TGF-§ in PBMC
from TB patients than in healthy contacts. Blocking TGF-
B activity in PPD-stimulated PBMC cultures from PTB
patients, either by neutralizing antibodies or by the nat-
ural inhibitors decorin and latency-associated peptide,
normalized their blastogenic response and also signifi-
cantly enhanced, but did not normalize, their IFN-y pro-
duction. Data on PPD-induced production of IL-10 were
less consistent, but anti-IL-10 also increased the T cell

responses from the patients and acted synergistically with -~

anti-TGF-B. Remarkably, neither anti-TGF-B nor anti-IL-10
enhanced the PPD response in the healthy controls,
but both antibodies slightly increased the depressed
T cell responses of the patients PBMC to a non-MTB Ag
(Candida).*"®

Besides the systemic immunosuppressive effects of
TGF-B and IL-10, the local production of these cytokines
in the pleura or the lung might also have beneficial anti-
inflammatory effects and limit excessive tissue destruc-
tion. Moreover, TGF-$ displays a fibrogenic activity,
which helps to isolate the infectious focus, but might also
reduce the lung function by scarring and destruction of
the parenchyma.®

Suppression by MO (and/or CD16+ lymphocytes) can-
not be the full explanation for PPD-hyporesponsiveness,
since depletion of both subsets does not completely
restore the in vitro responses in most active PTB patients
and even does not enhance them at all in some cases.?>*
The latter observations suggest that intrinsic T cell
defects also operate during PTB.
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5. INTRINSIC T CELL ANERGY AND TENDENCY
TO APOPTOSIS DURING PTB

In newly diagnosed PTB patients with advanced disease,
neither depletion of suppressive cells, nor neutralization
of TGF-B and/or IL-10, nor addition of IL-2 can increase
the PPD-induced IFN-y production to levels seen in
healthy PPD(+) controls** When a successful anti-
mycobacterial treatment is given, the PPD-stimulated
blastogenesis and the production of TGF- in PBMC
cultures normalize within a few months, but the PPD-
induced IFN-y production remains depressed for over
one year after the end of the treatment (Hirsch & Ellner;
unpublished). The long-lasting deficiency in IFN-y pro-
duction, despite the termination of MO-TGF-mediated
suppression, points to an intrinsic T cell dysfunction,
which is not rapidly corrected by treatment.

Conceivably, the intrinsic T cell hyporesponsiveness
might be genetically defined or acquired. A particular
HLA type or a specific T cell receptor repertoire defect
could preclude the generation of protective responses.
Reports on associations of HLA types with susceptibility
to mycobacterial diseases have been widely divergent.”’~*
Acquired T cell deficiency, resulting in increased suscept-
ibility to PTB, is observed during HIV infection (see
section 7), but, to a lesser extent, also in other conditions
of relative immunodeficiency, including diabetes, malnu-
trition and ageing.®%**

Apoptosis or programmed cell death (abbreviated PCD)
is in the first place a physiological process to terminate
normal immune responses.” Chagas’ disease, malaria and
HIV, infections characterized by immune responses that
are not fully protective, are associated with excessive
immune activation, secondary T cell refractoriness and/or
programmed cell death.”**® Especially in the case of HIV,
there is compelling evidence that the inappropriate
induction of apoptosis is one of the mechanisms of
immunodeficiency.” '°! The question whether apoptosis
could have a role in T cell hyporesponsiveness during
PTB, therefore, seems relevant.

In a recent study, we demonstrated that fresh ex vivo T
cells from untreated PTB patients displayed a significant
level of deoxyribonucleic acid (DNA) fragmentation (a
key event in apoptosis), which was absent in fresh T cells
from controls. In the patients, PCD was further enhanced
by in vitro stimulation with MTB and correlated with T
cell hyporesponsiveness (reduced proliferation and IFN-y
production). This activation-induced PCD was disease-
and antigen-specific, as it was not observed after MTB-
stimulation of control PBMC, nor after stimulation of the
patients’ PBMC with a non-MTB-related Ag (Candida) (%
and Hirsch, submitted).

The death pathway of MTB-related PCD remains to be
established, but several theoretical possibilities are open.
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Apoptosis could be linked to the Fas system e.g. increased
expression or activity of the Fas/APO1 receptor on T cells
and increased expression or secretion of Fas-ligand by
monocytes or other cells.!”*'% Other members of the
TNF and TNF-R families could also be involved.'%¢'%
Alternatively, refractoriness to additional stimulation
and/or induction of apoptosis might be the consequence
of defects in costimulatory interactions between the B7
molecules on APC and the B7-receptors on the Ag-
specific T cells (including the agonistic CD28 and the
antagonistic CTLA4).7%'%%11%1!! Similarly, deficient upregu-
lation of IL-2 receptor o chain and/or lowered production
of ‘survival’ cytokines IL-2, IL-7 or IL-15 (which all trigger
a common receptor y-chain) could render the T cells

hypo-responsive and/or more vulnerable to cell
death.'*13

6. COMPARTMENTALIZATION OF MTB SPECIFIC
T CELLS TO THE SITE OF DISEASE

All of the observations in the previous paragraphs were
made on peripheral blood cells from active pulmonary
TB patients. Although peripheral T cells and monocytes
obviously can be influenced by pulmonary pathology, as
they travel through the lung many times each day, the
evaluation of their function still provides rather indirect
information on what happens at the site of the disease.
Mononuclear cells, recovered from the pleural space (in
the case of TB pleuritis) or from broncho-alveolar lavage
(BAL) in pulmonary affected patients, offer a more direct
view on in situ immune responses. Tuberculous pleurisy
is frequently self-limiting and therefore is considered as
an example of protective immunity. Active PTB, on the
other hand, is less likely to heal spontaneously and there-
fore is associated with non-protective immune reactions
and immunopathology.®!

Pleural T cells from TB pleuritis patients show pheno-
typic signs of activation in vivo and produce a variety of
cytokines in situ.'"'** Moreover, pleural T cells are
intrinsically more responsive to ex vivo PPD stimulation
than the corresponding PBMC.%!'%12312¢ Alyeolar T cells
from patients with PTB, on the other hand, also have a
high cytokine content'® and their alveolar MO/MA show
evidence of immaturity.'?*'?” The in vitro responsiveness
of the BAL-T cells from PTB patients remains a controver-
sial topic, since both decreased and increased responses
to mycobacterial stimulation have been reported.'?%'#

Overall, most data point to a different degree of activa-
tion and responsiveness in mononuclear cells from PTB
patients, depending on their source: the pleural cells
seem most active in cell-mediated immune functions
while peripheral cells are rather hyporesponsive and BAL-
T cells probably occupy an intermediate position. It is not
established whether this apparent functional compart-
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mentalization is due to redistribution of the most MTB-
reactive T cells to the site of disease, to a local selective
expansion and/or to a different balance between T cell
stimulatory and suppressive functions of pleural and
lung MO/MA as compared to the peripheral blood MO.
Similarly, how this compartmentalization relates to pro-
tective immune responses or immunopathology, remains
to be clarified.

A more extensive discussion on pleural and pulmonary
immune responses during PTB is beyond the scope of this
review and was recently covered by others.*

7. ROLE OF IMMUNE DEFICIENCY AND
ACTIVATION IN THE INTERACTION BETWEEN
MTB AND HIV

7.1. Mechanisms involved in the opportunistic behavior
of MTB during HIV infection

It is well known that active PTB is a very important and
relatively early complication of HIV infection. HIV
increases the risk of overt PTB more than 10-fold.'° The
reasons for this association have been elucidated to a
large extent:

¢ HIV and MTB share the MO/MA, including AM, as
important host cells'?'-'3

® dysfunction and later depletion of the CD4 T cells by
HIV profoundly reduces the ‘adaptive or acquired’
defense against MTB. HIV particularly affects type 1
cell-mediated responses'®*'%

o the predominant weakness of type 1 responses partly
relies on dysfunction of the APC, which, during HIV
infection, produce less stimulatory IL-12 and
relatively more suppressive IL-10."*""** Whether HIV
also adversely influences antigen processing per se
remains controversial.'40-'#

7.2. Aberrant activation of MO might explain the
adverse effect of PTB on HIV prognosis

An intercurrent episode of PTB, even when adequately
treated, results in a worsening of the course of HIV infec-
tion in dually infected subjects.' This might be related to
the 5 — 160-fold increase of HIV viral load, which has
been noted during active PTB.'* A high plasma viremia is
associated with increased CD4 T cell depletion, with a
rapid switch to a more virulent (Le. syncytium-inducing
and coreceptor CXCR4-using) phenotype and high
chances of immune escape mutants.*'*® There is evi-
dence that any in vivo immune activation, including vac-
cination or blood transfusion, can temporarily increase
the viral load.®""'®* As compared to these stimuli, the
immune activation induced by an episode of PTB is much
more intense and prolonged.
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Several lines of evidence indicate that interactions
at the level of the MO/MA are very important in this
process.'™* Blood MO from PTB patients are more suscept-
ible to productive infection with HIV than those from
healthy controls.'® MTB or PPD can activate latent HIV-1
in alveolar macrophages from acquired immune defi-
ciency syndrome (AIDS) patients in vitro.!" Alveolar
macrophages from MTB-HIV dually infected subjects
produce significantly higher levels of HIV-1 particles if
they are taken from the MTB-infected as compared to un-
affected lung segments or than AM from MTB-uninfected
subjects.”” Finally, MTB-HIV co-infected MA show an
increased capacity to transmit HIV-1 to activated T cells,
as compared to HIV only infected MA.'® The stimulatory
effect of MTB is partly due to upregulation of TNF-o and
IL-1, associated with activation of NFkB, which triggers
the promoter of HIV proviral DNA and thus potently
induces viral transcription.'**1%

8. THERAPEUTIC POSSIBILITIES OF
IMMUNOMODULATION IN PTB

Excessive activation, MO-mediated suppression, T cell
anergy and apoptosis all might contribute to the patho-
genesis of PTB. Some of these pathological mechanisms
could be corrected in vivo by selective interventions, aim-
ing at the stimulation of MTB-specific T cell proliferation
and IFN-y production as well as at the neutralization of
inflammatory and suppressive MO functions.

Interleukin-2 production is deficient during active PTB
and addition of IL-2 could enhance, although perhaps not
fully correct, T cell proliferation in vitro.*** An open label
trial with low dose daily IL-2, subcutaneously injected,
was set up during the first month of a conventional multi-
drug anti-TB therapy and in patients with drug-resistant
PTB. Under these conditions, IL-2 was safe and had mod-
erate, but significant additive effects on chemotherapy.'s'
Placebo-controlled trials are underway to further sub-
stantiate these findings.

Since type-1 responses are crucial to protection, IEN-y
or its inducers provide another logical option. Treatment
with IFN-y has been proposed, but when administered
systemically, could induce pathological levels of TNE-
0.'67154 In lepromatous leprosy, the intradermal injection
of IFN-y was shown to have favorable effects on the bacil-
lary load, but also induced erythrema nodosum lepro-
sum. This complication was most probably mediated by
the secondary release of TNF and could be treated with
Thalidomide (THAL).'® In seven patients with refractory
and disseminated non-tuberculous mycobacterial infec-
tions, clinical improvement was observed during subcuta-
neous treatment with IFN-y.'%¢ Recently, bacteriological
and clinical improvement was reported in five multidrug-
resistant pulmonary TB patients, during treatment with
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IFN-y via aerosol.' Clearly, these positive results in a lim-
ited number of various patients, treated in an open-label
setting, need to be confirmed in placebo-controlled trials.

Mycobacterium vaccae is a naturally occurring inducer
of type-1 responses, which can be safely injected in a
three dose schedule. '*® The first non-controlled trials in
TB patients seemed promising, but analysis of a recent
South-African trial showed no effectiveness (***'"° and
personal communication). A placebo-controlled trial in
Uganda with immunological as well as bacteriological
endpoints is still in progress.

Interleukin-12 is probably the single most potent IFN-y-
inducing cytokine'”"'”? and was found to increase the
defective IFN-y response to PPD of PBMC from PTB
patients to the level of healthy controls.*! However, it is
not clear whether only Ag-responsive CD4 T cells or also
non-Ag-specific cells (either afT, ¥8T or NK cells) produce
the additional IFN-y. In the latter case, an inappropriate
inflammatory response could be triggered as well. Animal
studies with I1-12 have met with some success, but a
narrow therapeutic range was evident: IL-12 not only
induces IFN-y, but also inflammatory cytokines, including
TNF-¢..'” Human trials have been set back by lethal com-
plications in pilot studies, although recent data suggest
that serious side-effect can be prevented by modifying
the schedule.'”*'”

Other regulatory cytokines, including IL-15 and IL-18,
also have IFN-y-inducing capacities'’*"'”® and are of possi-
ble relevance for mycobacterial diseases.'”'®! IL-18 was
recently shown to play an important role in both innate
and acquired type-1 responses and to act synergistically
with IL-12,'®? but more data are needed on the activity
and toxicity profiles of IL-18 in vivo.

Counteracting the immune-suppressive TGF-f or IL-10
could significantly improve the IL-2 and IFN-y production.
In a first approach, naturally occurring inhibitors, in-
cluding decorin and latency-associated peptide, seem a
better alternative than injection of neutralizing anti-
bodies, because the latter are more likely to induce
adverse immune reactions (unless they could be fully
humanized).®

Neutralization of inflammatory cytokines, especially
TNF-o, is still another option. Dexamethasone (DEX), pen-
toxyfilline (PTX) and THAL all inhibit TNF-0. production
in vitro, but through different mechanisms.®*'# DEX, as
well as PTX, however, might suppress potentially benefi-
cial cytokines, including IL-2 and IEN-y,'®'® whereas
THAL, on the contrary, was reported to enhance their pro-
duction.”® Despite these theoretical differences, all three
agents have proven to be of benefit, when properly used
in adjunction to chemotherapy. DEX has been mainly
applied in tuberculous meningitis and was shown to
improve survival and to reduce neurological sequel-
lae.””**? In a randomized controlled trial in Ugandan
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HIV(+) TB patients, all treated with standard chemo-
therapy, the addition of PTX significantly lowered HIV
replication, raised blood hemoglobin levels in anemic
patients and tended to improve performance scores.'®® In
two recent trials, one in HIV(-) and HIV(+) PTB and the
other in HIV(+) subjects with or without PTB, THAL was
shown to reduce circulating TNF levels and to enhance
the weight gain in HIV(-) and HIV(+) PTB. THAL also low-
ered HIV plasma load in dually infected HIV-patients,
whereas the anti-viral effect in HIV only infected subjects
was less convincing.'”*'** In patients with AIDS disease,
THAL had, however, considerable side effects, resulting in
premature cessation of the therapy.'” The development
of inhibitors of the MTB-related inflammation with a
higher potency and low toxicity, is clearly desirable.

Anti-apoptotic therapies are an emerging possibility.
[L-15 can already be cited as a potential candidate. Like
other y-chain activating cytokines, it has clear cut anti-
apoptotic effect,’® but it has several other theoretical
advantages, especially in HIV(+) TB patients: it can trigger
T cells, which only express low-affinity receptors for
IL-2,'7 it is known to induce IFN-y in vitro;'?’ it has less
HIV-stimulating activity than IL-2 and improves several T
cell functions, critical for HIV control, including cytolytic
T cell activity,'?5-20!

9. SOME CONCLUSION AND PERSPECTIVES

Active PTB is characterized by failing immune control
and pathological inflammation. A large body of evidence
indicates that dysfunction of MO/MA has a central role in
TB pathogenesis. MO/MA are both the source of pro-
inflammatory cytokines, including TNF-o, and of the T
cell-suppressive factors TGF-f and IL-10. MO-mediated
suppression, as well as a prolonged intrinsic T cell dys-
function and a tendency to T cell apoptosis are associated
with the characteristic anergy in vivo and the lowered
MTB-specific IFN-y production in vitro. Therefore, both
IFN-y-inducing and anti-apoptotic treatments as well as
neutralization of TNF, TGF-§ or IL-10, could have a bene-
ficial effect on the course of the disease, especially in
multidrug-resistant cases. 7

Two important sets of basic questions remain to be
further investigated:

1. are the immune dysfunctions, described mainly in the
peripheral blood of active PTB patients, in fact
underlying (and preceding) the (re)activation of MTB
or are they induced by the disease itself? Prospective
cohort studies (e.g. within households) are underway
to answer this question

2. which exactly are the local immune reactions,
resulting in protection (e.g. during TB pleuritis) or in
chronic disease (e.g. PTB)? And how does local
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immunity relate to the immune dysfunction,
measured in the peripheral blood?

The current intense efforts of several groups to unravel

the

immunology of TB will not only result in a better

understanding of its pathogenesis, but also in the devel-
opment of new immunotherapeutic strategies, which
could significantly improve TB treatment.
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